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FROM THE PREFACE TO THE
FIRST EDITION

THIS book is an elaboration of certain lectures

which were given last winter to a somewhat con-

siderable audience. The difficulty which persons

not conversant with mathematics and physics experience

in understanding the theory of relativity seems to me to

be due for the most part to the circumstance that they

are not familiar with the fundamental conceptions and
facts of physics, in particular of mechanics. During the

lectures I therefore showed some quite simple qualitative

experiments to serve as an introduction to such concep-

tions as velocity, acceleration, mass, force, intensity of field,

and so forth. In my endeavour to find a similar means,
adapted to book purposes, the semi-historical method of

representation here chosen occurred to me, and I hope I

have succeeded in avoiding the uninspiring method of the

elementary text books of physics. But it must be em-
phasised that the historical arrangement has been selected

only as a cloak which is to bring into stronger relief the

outline of the main theme, the logical relationship. Having
once started this process I found myself compelled to con-

tinue, and in this way my undertaking increased to the

dimensions of this book.

The reader is assumed to have but little mathematical

knowledge. I have attempted to avoid not only the

higher mathematics but even the use f of elementary

functions, such as logarithms, trigonometrical functions,

and so forth. Nevertheless, proportions, linear equations,

and occasionally squares and square roots had to be intro-

duced. I advise the reader who is troubled with the

formulae to pass them by on the first reading and to seek

to arrive at an understanding of the mathematical symbols
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from the text itself. I have made abundant use of figures

and graphical representations. Even those who are un-

practised in the use of co-ordinates will learn to read the

curves easily.

The philosophical questions to which the theory of

relativity gives rise will only be touched on in this book.

Nevertheless a definite logical point of view is maintained

throughout. I believe I am right in asserting that this

view agrees in the main with Einstein's own opinion.

Moritz Schlick takes up a similar view in his valuable

work "Allgemeine Erkenntislehre " (The General Theory
of Knowledge).

Of the other books which I have used I should like

to quote, above all, Ernst Mach's classical ''Mechanics"

(which has appeared in English), and then the very lucidly

written volume by E. T. Whittaker, "A History of the

Theories of Aether and Electricity" (London, Longmans,

Green & Co., 19 10), and the comprehensive account of

the Theory of Relativity given by Hermann Weyl in his

" Space, Time, Matter " (English translation published

by Messrs. Methuen & Co., Ltd., 1922). Anyone who
wishes to penetrate further into Einstein's doctrines must

study the latter work. It is impossible to enumerate the

countless books and essays from which I have drawn more
or less directly. In conformity with the character of the

book I have refrained from giving references.

MAX BORN

Frankfurt on the Main

June, 1920



PREFACE
TO THE THIRD EDITION

APART from a number of minor alterations, this

edition differs from its two predecessors in that the
chapter on Einsteinian dynamics has been revised.

Previously, in forming the acceleration, we did not dis-

tinguish sharply between time and proper time, and we
used Minkowski's covariant force-vector in place of ordin-

ary force
;
this of course increased the difficulty of under-

standing a chapter which was, from the outset, not easy.

Dr. W. Pauli, jun., called my attention to a method of

deriving the relativistic formula of mass proposed by Lewis
and Tolman, which fitted in admirably with the scheme of

this book, as it linked up with the conception of momentum
in the same way as the account of mechanics here chosen.
The chapter on Einsteinian dynamics was revised in con-
formity with this point of view ; this also entailed some
alterations in the manner of presenting ordinary mechanics.
It is hoped that these changes will simplify the reading.

I should not like to lose this opportunity of thanking
Dr. W. Pauli for his advice. His great work on the
theory of relativity which has appeared as Article 19 in

the fifth volume of the " Enzyklopadie der mathematischen
Wissenschaften," which appeared recently, has been of

great service to me. It is to be recommended foremost
of all to those who wish to become intimately acquainted
with the theory of relativity.

MAX BORN

GOTTINGEN

6th March, 1922
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EINSTEIN'S
THEORY OF RELATIVITY

INTRODUCTION

Das schonste Gliick des denkenden Menschen ist, das Erforschliche

erforscht zu haben und das Unerforschliche ruhig zu verehren.
—Goethe.

THE world is not presented to the reflective mind as a

finished product. The mind has to form its picture

from innumerable sensations, experiences, communica-

tions, memories, perceptions. Hence there are probably not

two thinking people whose picture of the world coincides in

every respect.

When an idea in its main lines becomes the common property

of large numbers of people, the movements of spirit that are

called religious creeds, philosophic schools, and scientific systems

arise ; they present the aspect of a chaos of opinions, of articles

of faith, of convictions, that resist all efforts to disentangle

them. It seems a sheer impossibility to find a thread that

will guide us along a definite path through these widely ramified

doctrines that branch off perchance to recombine at other points.

What place are we to assign to Einstein's theory of rela-

tivity, of which this book seeks to give an account ? Is it

only a special part of physics or astronomy, interesting in

itself but of no great importance for the development of the

human spirit ? Or is it at least a symbol of a particular trend

of thought characteristic of our times ? Or does it itself,

indeed, signify a "world-view" (Weltanschauung) ? We shall

be able to answer these questions with confidence only when we
have become acquainted with the content of Einstein's doctrine.

But we may be allowed to present here a point of view which,

even if only roughly, classifies the totality of all world-views

and ascribes to Einstein's theory a definite position within

a uniform view of the world as a whole.

The world is composed of the ego and the non-ego, the inner

world and the outer world. The relations of these two poles
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are the object of every religion, of every philosophy. But the

part that each doctrine assigns to the ego in the world is different.

The importance of the ego in the world-picture seems to me
a measure according to which we may order confessions of

faith, philosophic systems, world-views rooted in art or science,

like pearls on a string. However enticing it may be to pursue

this idea through the history of thought, we must not diverge

too far from our theme, and we shall apply it only to that

special realm of human thought to which Einstein's theory

belongs—to natural science.

Natural science is situated at the end of this series, at the

point where the ego, the subject, plays only an insignificant

part ; every advance in the mouldings of the conceptions of

physics, astronomy, and chemistry denotes a further step

towards the goal of excluding the ego. This does not, of course,

deal with the act of knowing, which is bound to the subject,

but with the finished picture of Nature, the basis of which is

the idea that the ordinary world exists independently of and
uninfluenced by the process of knowing.

The doors through which Nature imposes her presence on
us are the senses. Their properties determine the extent of

what is accessible to sensation or to intuitive perception.

The further we go back in the history of the sciences, the more
we find the natural picture of the world determined by the

qualities of sense. Older physics was subdivided into mechanics,

acoustics, optics, and theory of heat. We see the connexions

with the organs of sense, the perceptions of motion, impressions

of sound, light, and heat. Here the qualities of the subject

are still decisive for the formation of conceptions. The deve-

lopment of the exact sciences leads along a definite path from
this state to a goal which, even if far from being attained,

yet lies clearly exposed before us : it is that of creating a picture

of nature which, confined within no limits of possible perception

or intuition, represents a pure structure of conception, con-

ceived for the purpose of depicting the sum of all experiences

uniformly and without inconsistencies.

Nowadays mechanical force is an abstraction which has

only its name in common with the subjective feeling of force.

Mechanical mass is no longer an attribute of tangible bodies

but is also possessed by empty spaces filled only by ether

radiation. The realm of audible tones has become a small

province in the world of inaudible vibrations, distinguishable

physically from these solely by the accidental property of the

human ear which makes it react only to a definite interval of

frequency numbers. Modern optics is a special chapter out

of the theory of electricity and magnetism, and it treats of the
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electro-magnetic vibrations of all wave-lengths, passing from
the shortest 7-rays of radioactive substances (having a wave-
length of one hundred millionth of a millimetre) over the Ront-
gen rays, the ultraviolet, visible light, the infra-red, to the longest
wireless (Hertzian) waves (which have a wave-length of many
kilometres). In the flood of invisible light that is accessible
to the mental eye of the physicist, the material eye is almost
blind, so small is the interval of vibrations which it converts
into sensations. The theory of heat, too, is but, a special part
of mechanics and electro-dynamics. Its fundamental concep-
tions of absolute temperature, of energy, and of entropy belong
to the most subtle logical configurations of exact science, and,
again, only their name still carries a memory of the subjec-
tive impression of heat or cold.

Inaudible tones, invisible light, imperceptible heat, these
constitute the world of physics, cold and dead for him who
wishes to experience living Nature, to grasp its relationships
as a harmony, to marvel at her greatness in reverential awe.
Goethe abhorred this motionless world. His bitter polemic
against Newton, whom he regarded as the personification of a
hostile view of Nature, proves that it was not merely a question
of an isolated struggle between two investigators about in-

dividual questions of the theory of colour. Goethe is the
representative of a world-view which is situated somewhere
near the opposite end of the scale suggested above (constructed
according to the relative importance of the ego), that is, the
end opposite to that occupied by the world-picture of the exact
sciences. The essence of poetry is inspiration, intuition, the
visionary comprehension of the world of sense in symbolic
forms. But the source of poetic power is experience, whether
it be the clearly conscious perception of a sense-stimulus, or
the powerfully represented idea of a relationship or connexion.
What is logically formal and rational plays no part in the world-
picture of such a type of gifted or indeed heaven-blessed
spirit. The world as the sum of abstractions that are connected
only indirectly with experience is a province that is foreign to

it. Only what is directly presented to the ego, only what can
be felt or at least represented as a possible experience is real to
it and has significance for it. Thus to later readers, who survey
the development of exact methods during the centurv after

Goethe's time and who measure the power and significance

of Goethe's works on the history of natural science by their
fruits, these works appear as documents of a visionary mind,
as the expression of a marvellous sense of one-ness with (Ein-

fuhlung) the natural relationships, but his physical assertions

will seem to such a reader as misunderstandings and fruit]- SS
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rebellions against a greater power, whose victory was assured

even at that time.

Now in what does this power consist, what is its aim and
device ?

It both takes and renounces. The exact sciences presume
to aim at making objective statements, but they surrender their

absolute validity. This formula is to bring out the following

contrast.

All direct experiences lead to statements which must be

allowed a certain degree of absolute validity. If I see a red

flower, if I experience pleasure or pain, I experience events which

it is meaningless to doubt. They are indubitably valid, but
only for me. They are absolute, but they are subjective. All

seekers after human knowledge aim at taking us out of the

narrow circle of the ego, out of the still narrower circle of the

ego that is bound to a moment of time, and at establishing

common ground with other thinking creatures. It first estab-

lishes a link with the ego as it is at another moment, and then

with other human beings or gods. All religions, philosophies,

and sciences have been evolved for the purpose of expanding

the ego to the wider community that " we " represent. But
the ways of doing this are different. We are again confronted

by the chaos of contradictory doctrines and opinions. Yet we
no longer feel consternation, but order them according to the

importance that is given to the subject in the mode of com-
prehension aimed at. This brings us back to our initial prin-

ciple, for the completed process of comprehension is the

world-picture. Here again the opposite poles appear.
'

, The minds of one group do not wish to deny or to sacrifice

the absolute, and they therefore remain clinging to the ego.

They create a world-picture that can be produced by no sys-

tematic process, but by the unfathomable action of religious,

artistic, or poetic means of expression in other souls. Here
faith, pious ardour, love of brotherly communion, but often

also fanaticism, intolerance, intellectual suppression hold sway.

The minds of the opposite group sacrifice the absolute.

They discover—often with feelings of terror—the fact that

inner experiences cannot be communicated. They no longer

fight for what cannot be attained, and they resign themselves.

But they wish to reach agreement at least in the sphere of the

attainable. They therefore seek to discover what is common
in their ego and in that of the other egos ; and the best that

was there found was not the experiences of the soul itself, not

sensations, ideas, or feelings, but abstract conceptions of the

simplest kind—numbers, logical forms ; in short, the means of

expression of the exact sciences. Here we are no longer con-
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cerncd with what is absolute. The height of a cathedral does
not, in the special sphere of the scientist, inspire reverence, but
is measured in metres and centimetres. The course of life is

no longer experienced as the running out of the sands of time,

but is counted in years and days. Relative measures take tin-

place of absolute impressions. And we get a world, narrow,
one-sided, with sharp edges, bare of all sensual attraction, of

all colours and tones. But in one respect it is superior to other
world-pictures : the fact that it establishes a bridge from mind
to mind cannot be doubted. It is possible to agree as to

whether iron has a specific gravity greater than wood,
whether water freezes more readily than mercury, whether
Sirius is a planet or a star. There may be dissensions, it may
sometimes seem as if a new doctrine upsets all the old " facts,"

yet he who has not shrunk from the effort of penetrating into

the interior of this world will feel that the regions known with
certainty are growing, and this feeling relieves the pain which
arises from solitude of the spirit, and the bridge to kindred
spirits becomes built.

We have endeavoured in this way to express the nature of

scientific research, and now we can assign Einstein's theory of

relativity to its category.

In the first place, it is a pure product of the striving after

the liberation of the ego, after the release from sensation and
perception. We spoke of the inaudible tones, of the invisible

light, of physics. We find similar conditions in related sciences,

in chemistry, which asserts the existence of certain (radioactive)

substances, of which no one has ever perceived the smallest

trace with any sense directly— or in astronomy, to which we
refer below. These " extensions of the world," as we might
call them, essentially concern sense-qualities. But everything
takes place in the space and the time which was presented to

mechanics by its founder, Newton. Now, Einstein's discovery

is that this space and this time are still entirely embedded in

the ego, and that the world-picture of natural science becomes
more beautiful and grander if these fundamental conceptions

are also subjected to relativization. Whereas, before, space

was closely associated with the subjective, absolute sensation

of extension, and time with that of the course of life, they are

now purely conceptual schemes, just as far removed from direct

perception as entities, as the whole region of wave-lengths of

present-day optics is inaccessible to the sensation of light except
for a very small interval. But just as in the latter case, the

space and time of perception allow themselves to be ordered

without giving rise to difficulties, into the system of physical

conceptions. Thus an objectivation is attained, which has
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manifested its power by predicting natural phenomena in

a truly wonderful way. We shall have to speak of this in

detail in the sequel.

Thus the achievement of Einstein's theory is the relativiza-

tion and objectivation of the conceptions of space and time.

At the present day it is the final picture of the world as

presented by science.



CHAPTER I

GEOMETRY AND COSMOLOGY

i. The Origin of the Art of Measuring Space and
Time

THE physical problem presented by space and time

is nothing more than the familiar task of fixing

numerically a place and a point of time for every phy
event, thus enabling us to single it out, as it were, from the

chaos of the co-existence and succession of things.

The first problem of Man was to find his way about on the

earth. Hence the art of measuring the earth (geodesy) became
the source of the doctrine of space, which derived its name
" geometry " from the Greek word for earth. From the v

outset, however, the measure of time arose from the regular

change of night and day, of the phases of the moon and of the

seasons. These phenomena forced themselves on Man's

attention and first moved him to direct his gaze to the

stars, which were the source of the doctrine of the anivc

cosmology. Astronomic science applied the teachings of g
-

metry that had been tested on the earth to the heavenly regions,

allowing distances and orbits to be defined. For this purpose

it gave the inhabitants of the earth the celestial (astronomic)

measure of time which taught Man to distinguish between

Past, Present, and Future, and to assign to each thing its place

in the realm of Time.

2. Units of Length and Time

The foundation of every space- and time-measurement is

laid by fixing the unit. A datum of length, " so and so many
metres." denotes the ratio of the length to be measured to the

length of a metre. A time-datum of " so and so many seconds
"

denotes the ratio of the time to be measured to the duration

of a second. Thus we are always dealing with ratio-nunV:

relative data concerning the units. The latter themselves

are to a high degree arbitrary, and are chosen for reasons of

their being capable of easy reproduction, of being easily

transportable, durable, and so forth.
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In physics the measure of length is the centimetre (cm.),

the hundredth part of a metre rod that is preserved in Paris.

This was originally intended to bear a simple ratio to the

circumference of the earth, namely, to be the ten-millionth

part of a quadrant, but more recent measurements have dis-

closed that this is not accurately true.

The unit of time in physics is the second (sec), which bears

the well-known relation to the time of rotation of the earth

on its axis.

3. Origin and Co-ordinate System

But if we wish not only to determine lengths and periods

of time, but also to designate places and points of time, further

conventions must be made. In

the case of time, which we re-

gard as a one-dimensional con-

figuration, it is sufficient to

specify an origin (or zero-point)

.

Historians reckon dates by
counting the years from the

birth of Christ. Astronomers
choose other origins or initial

points, according to the objects

of their researches ; these they

call epochs. If the unit and
the origin are fixed, every event

may be singled out by assigning

a number-datum to it.

In geometry in the narrower
sense, the determination of position on the earth, two data
must be given to fix a point. To say " My house is in Baker
Street," is not sufficient to fix it. The number of the house
must also be given. In many American towns the streets

themselves are numbered. The address No. 25, 13th Street,

thus consists of two number-data. It is exactly what mathe-
maticians call a " co-ordinate determination." The earth's

surface is covered with a network of intersecting lines, which
are numbered, or whose position is determined by a number,
distance, or angle (made with respect to a fixed initial or zero-

line).

Geographers generally use geographic longitude (east of

Greenwich) and latitude (north or south) (Fig. 1). These de-

terminations at the same time fix the zero-lines from which
the co-ordinates are to be counted, namely, for geographical

longitude the meridian of Greenwich, and for the latitude the
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equator. In investigations of plane geometry we generally

use rectilinear [Cartesian) co-ordinates (Fig. 2), x, y, which
signify the distances from two mutually perpendicular co-

ordinate axes ; or, occasionally, we also use oblique co-ordinates

(Fig. 3), polar co-ordinates (Fig. 4), and others. When the

Fig. 2. Fig. 3.

co-ordinate system has been specified, we can seek out each

point or place if two numbers are given.

In precisely the same way we require three co-ordinates

to fix points in space. It is simplest to choose mutually per-

pendicular rectilinear co-ordinates again ; we denote them by
x,y,z (Fig. 5).

Fig. 4. Fig. 5.

4. The Axioms of Geometry

Ancient geometry, regarded as a science, was less concerned

with the question of determining positions on the earth's

surface, than with determining the size and form of areas,

figures in space, and the laws governing these questions. We
see traces of the origin of this geometry in the art of surveying

and of architecture. That is also the reason why it managed
without the conception of co-ordinates. First and foremost,
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geometric theorems assert properties of things that are called

points, straight lines, planes. In the classic canon of Greek

geometry, the work of Euclid (300 B.C.), these things are not

defined further but are only denominated or described. Thus

we here recognize an appeal to intuition. You must already

know what is a straight line if you wish to take up the study

of geometry. Picture the edge of a house, or the stretched

cable of your surveying instruments, form an abstraction from

what is material and you will get your straight line. Next,

laws are set up that are to hold between these configurations

of abstraction, and it is to the credit of the Greeks to have

made the great discovery that we need assume only a small

number of these theorems to make all others come out of them

correctly with logical inevitableness. These theorems, which

are used as the foundation, are the axioms. Their correctness

cannot be proved. They do not arise from logic but from other

sources of knowledge. What these sources are has formed the

subject of the theories of all the philosophies of the succeeding

centuries. Scientific geometry itself, up to the end of the

18th century, accepted these axioms as given, and built up

its purely deductive system of theorems on them.

We shall not be able to avoid discussing in detail the question

of the meaning of the elementary configurations called point,

straight line, and so forth, and the grounds of our knowledge

of the geometric axioms. For the present, however, we shall

adopt the standpoint that we are clear about these things,

and we shall thus operate with the geometric conceptions in the

way we learned (or should have learned) at school, and in the

way numberless generations of people have done, without

scruples. The intuitional truth of numerous geometric theo-

rems, and the utility of the whole system in giving us bearings

in our ordinary real world is to suffice for the present as our

justification for using them.

5. The Ptolemaic System

To the eye the heavens appear as a more or less flat dome
to which the stars are attached. But in the course of a day

the whole dome turns about an axis whose position in the

heavens is denoted by the pole-star. So long as this visual

appearance was regarded as reality an application of geometry

from the earth to astronomic space was superfluous, and was,

as a matter of fact, not carried out. For lengths and distances

measurable with earthly units were not present. To denote

the positions of the stars only the apparent angle that the

line of vision from the observer to the star formed with the
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horizon and with another appropriately chosen plane had to

be known. At this stage of knowledge the earth's surface wa
considered at rest and was the eternal basis of the universe.

The words " above " and " below " had an absolute meaning
and when poetic fancy or philosophic speculation undertook

to estimate the height of the heavens or the depth of Tartarus,

the meaning of these terms required no word of elucidation.

At this stage scientific concepts were still being drawn from the

abundance of subjective data. The world-system called after

Ptolemy (150 a.d.) is the scientific formulation of this mental

attitude. It was already aware of a number of detailed facts

concerning the motion of the sun, the moon, and the planets,

and it had a considerable theoretical grasp of them, but it

retained the notion that the earth is at rest and that the stars

are revolving about it at immeasurable distances. Its orbits

were determined as circles and epi-cycles according to the

laws of earthly geometry, yet astronomic space was not actually

through this subjected to geometry. For the orbits were

fastened like rings to the crystal shells, which, arranged in

strata, signified the heavens.

6. The Copernican System

It is known that Greek thinkers had already discovered

the spherical shape of the earth and ventured to take the first

steps from the geometric world-systems of Ptolemy to higher

abstractions. But only long after Greek civilization and

culture had died, did the peoples of other countries accept

the spherical shape of the earth as a physical reality. This

is the first truly great departure from the evidence of our eyes,

and at the same time the first truly great step towards relativiza-

tion. Again centuries have passed since that first turning-

point, and what was at that time an unprecedented discovery

has now become a platitude for school-children. This makes

it difficult to convey an impression of what it signified to thinkers

to see the conceptions " above " and " below " lose their

absolute meaning, and to recognize the right of the inhabitants

of the antipodes to call " above " in their regions what we call

" below " in ours. But after the earth had once been circum-

navigated all dissentient voices became silent. For this reason,

too, the discovery of the sphericity of the earth offered no reason

for strife between the objective and the subjective view of the

world, between scientific research and the church. This strife

broke out only after Copernicus (1543) displaced the earth

from its central position in the universe and created the helio-

centric world-system.
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In itself the process of relativization was hardly advanced

by this, but the importance of the discovery for the develop-

ment of the human spirit consisted in the fact that the earth,

mankind, the individual ego, became dethroned. The earth

became a satellite of the sun and carried around in space

the peoples swarming on it. Similar planets of equal im-

portance accompany it in describing orbits about the sun.

Man is no longer important in astronomy, except for himself.

But still more, none of these amazing facts arise from ordinary

observation (such as is the case with a circumnavigation

of the globe), but from observations which were, for the time

in question, very delicate and subtle, from different calculations

of planetary orbits. The evidence was at any rate such as

was neither accessible to all men nor of importance for everyday

life. Ocular evidence, intuitive perceptions, sacred and pagan

tradition alike speak against the new doctrine. In place of the

visible disc of the sun it puts a ball of fire, gigantic beyond

imagination; in place of the friendly lights of the heavens,

similar balls of fire at inconceivable distances, or spheres like the

earth, that reflect light from other sources; and all visible

measures are to be regarded as deception, whereas immeasur-

able distances and incredible velocities are to represent the

true state of affairs. Yet this new doctrine was destined to

be victorious. For it drew its power from the burning wish

of all thinking minds to comprehend all things of the material

world, be they ever so unimportant for human existence,

as a co-ordinate unity—to make them a permanent possession

of the intellect and communicable to others. In this process,

which constitutes the essence of scientific research, the human
spirit neither hesitates nor fears to doubt the most striking

facts of visual perception, and to declare them to be illusions,

but prefers to resort to the most extreme abstractions rather

than exclude from the scientific description of Nature one

established fact, be it ever so insignificant. That, too, is why
the church, at that time the carrier of the subjective world-

view then dominant, had to persecute the followers of the

Copernican doctrine, and that is why Galilei had to be brought

before the inquisitorial tribunal as a heretic. It was not so

much the contradictions to traditional dogmas as the changed

attitude towards spiritual events that called this struggle into

being. If the experience of the soul, the direct perception of

things, was no longer to have significance in Nature, then re-

ligious experience might also one day be subjected to doubt.

However far even the boldest thinkers of those times were

removed from feelings of religious scepticism, the church

scented the enemy.
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The great relativizing achievement of Copernicus was the

root of all the innumerable similar but lesser relativizations

of growing natural science until the time when Einstein's

discovery ranged itself as a worthy result alongside that of

its great predecessor.

But now we must sketch in a few words the cosmos as

mapped out by Copernicus.

We have first to remark that the conceptions and laws

of earthly geometry can be directly applied to astronomic

space. In place of the cycles of the Ptolemaic world, which

were supposed to occur on surfaces, we now have real orbits

in space, the planes of which may have different positions.

The centre of the world-system is the sun. The planets de-

scribe their circles about it, and one of them is the earth, which

rotates about its own axis, and the moon in its turn revolves

in its orbit about the earth. But beyond, at enormous dis-

tances, the fixed stars are suns like our own, at rest in space.

Copernicus' constructive achievement consists in the fact that

with this assumption the heavens must exhibit all these pheno-

mena which the traditional world-system was able to explain

only by means of complicated and artificial hypotheses. The

alternation of day and night, the seasons, the phenomena

of the moon's phases, the winding planetary orbits, all these

things become at one stroke clear, intelligible, and accessible to

simple calculations.

7. The Elaboration of the Copernican Doctrine

The circular orbits of Copernicus soon no longer sufficed

to account for the observations. The real orbits were evidently

considerably more complicated. Now, an important point

for the new view of the world was whether artificial construc-

tions, such as the epicycles of the Ptolemaic system or an im-

provement in the calculations of the orbits could be success-

fully carried out without introducing complications. It was

the immortal achievement of Kepler (1618) to discover the

simple and striking laws of the planetary orbits, and hence

to save the Copernican system at a critical period. The

orbits are not, indeed, circles about the sun, but curves closely

related to circles, namely, ellipses, in one focus of which

the sun is situated. Just as this law determines the form of

the orbits in a very simple manner, so the other two laws of

Kepler determine the sizes of the orbits and the velocities with

which they are traversed.

Kepler's contemporary, Galilei (1610), directed a telescope,

which had just then been invented, at the heavens and
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discovered the moons of Jupiter. In them he recognized a
microscopic model of the planetary system and saw Coper-
nicus' ideas as optical realities. But it is Galilei's greater merit
to have developed the principles of mechanics, the application of

which to planetary orbits by Newton (1867) brought about the
completion of the Copernican world-system.

Copernicus' circles and Kepler's ellipses are what modern
science calls a kinematic or phoronomic description of the orbits,

namely, a mathematical formulation of the motions which does
not contain the causes and relationships that bring about these

same motions. The causal expression of the laws of motion
is the content of dynamics or kinetics, founded by Galilei.

Newton has applied this doctrine to the motions of the heavenly
bodies, and by interpreting Kepler's laws in a very ingenious
way he introduced the causal conception of mechanical force

into astronomy. Newton's law of gravitation proved its

superiority over the older theories by accounting for all the
deviations from Kepler's laws, the so-called perturbations of

orbits, which refinements in the methods of observation had
in the meantime brought to light.

This dynamical view of the phenomena of motion in astro-

nomic space, however, at the same time demanded a more
precise formulation of the assumptions concerning space and
time. These axioms occur in Newton's work for the first time
as explicit definitions. It is therefore justifiable to regard the
theorems that held up to the advent of Einstein's theory as

expressions of Newton's doctrine of space and time. To under-
stand them it is absolutely necessary to have a clear survey
of the fundamental laws of mechanics, and that, indeed, from
a point of view which places the question of relativity in the
foreground, a standpoint that is usually neglected in the
elementary text-books. We shall therefore next have to

discuss the simplest facts, definitions, and laws of mechanics.



CHAPTER II

THE FUNDAMENTAL LAWS OF CLASSICAL MECHANICS

i. Equilibrium and the Conception of Force

HISTORICALLY, mechanics took its start from the

doctrine of equilibrium or statics ; logically, too, the

development from this point is the most natural one.

The fundamental conception of statics is force. It is derived

from the subjective feeling of exertion experienced when we
perform work with our bodies. Of two men he is the stronger

who can lift the heavier stone or stretch the stiffer bow. This
measure of force, with which Ulysses established his right

among the suitors, and which, indeed, plays a great part in the

stories of ancient heroes, already contains the germ of the

objectivation of the subjective feeling of exertion. The next
step was the choice of a unit of force and the measurement
of all forces in terms of their ratios to the unit of force, that

is, the relativization of the conception of force. Weight, being

the most evident manifestation of force, and making all things

tend downwards, offered the unit of force in a convenient form,

namely, a piece of metal which was chosen as the unit of weight
through some decree of the state or of the church. Nowadays
it is an international congress that fixes the units. The unit

of weight in technical matters is the weight of a definite piece

of platinum in Paris. This unit, called the gramme (grm.)

will be used in the sequel till otherwise stated. The instrument
used to compare the weights of different bodies is the balance.

Two bodies have the same weight, or are equally heavy,
when, on being placed in the two scales of the balance, they
do not disturb its equilibrium. If we place two bodies found
to be equally heavy in this manner in one pan of the balance,

but, in the other, a body such that the equilibrium is again
not disturbed, then this new body has twice the weight of

either of the other two. Continuing in this way we get,

starting from the unit of weight, a set of weights with the help
of which the weight of every body may be conveniently deter-

mined.

15
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It is not our task here to show how these means enabled

man to find and interpret the simple laws of the statics of

rigid bodies, such as the laws of levers. We here introduce

only just those conceptions that are indispensable for an

understanding of the theory of relativity.

Besides the forces that occur in man's body or in that

of his domestic pets he encounters others, above all in the

events that we nowadays call elastic. The force necessary to

stretch a cross-bow or any other bow belongs to this category.

Now, these can easily be compared with weights. If, for

example, we wish to measure the force that is necessary to

stretch a spiral spring a certain distance (Fig. 6), then we find

by trial what weight must be suspended from it to effect

equilibrium for just this extension. Then the force of the

spring is equal to that of the weight, except that the former

exerts a pull upwards but the latter

X~ ? downwards. The principle that
* action and reaction are equal and

opposite in the condition of equilib-

rium has tacitly been applied.

If such a state of equilibrium

be disturbed by weakening or re-

moving one of the forces, motion

occurs. The raised weight falls

when it is released by the hand sup-

porting it and thus furnishing the

reacting force. The arrow shoots

forth when the archer releases the

FlG 6 string of the stretched bow. Force

tends to produce motion. This is

the starting-point of dynamics, which seeks to discover the

laws of this process.

2. The Study of Motions—Rectilinear Motion

It is first necessary to subject the conception of motion

itself to analysis. The exact mathematical description of the

motion of a point consists in specifying at what place relative

to the previously selected co-ordinate system the point is

situated from moment to moment. Mathematicians use

formulae to express this. We shall as much as possible avoid

this method of representing laws and relationships, which is

not familiar to everyone, and shall instead make use of a graphi-

cal method of representation. Let us illustrate this for the

simplest case, the motion of a point in a straight line. Let the

unit of length be the centimetre, as usual in physics, and let the
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moving point be at the distance x = i cm. from the zero point

or origin at the moment at which we start our considerations

and which we call the moment t = o. In the course of i sec.

suppose the point to have moved a distance of \ cm. to the

right, so that for t = i the distance from the origin amounts

to i-5 cms. In the next second let it move by the same amount

to x = 2 cms., and so forth. The following small table gives

the distances x corresponding to the times t.

t. \ O T 2 ^ A ^ 6 7 8...
x

\
i i-5 2 2-5 3 3*5 4 4-55...

We see the same relationship pictured in the successive

lines of Fig. 7, in which the moving point is indicated as a small

circle on the scale of distances. Now, instead of drawing a

number of small diagrams, one above the other, we may also

t'6

US

t'-<+

t*3

t=2

t-1

t'O
2 3

Fig. 7.

>>A

draw a single figure in which the x's and the t's occur as co-

ordinates (Fig. 8). In addition, this has the advantage of

allowing the place of the point to be depicted not only at the

beginning of each full second but also at all intermediate times,

We need only connect the positions marked in Fig. 7 by a

continuous curve. In our case this is obviously a straight

line. For the point advances equal distances in equal times

;

the co-ordinates x, t thus change in the same ratio (or proportion-

ally), and it is evident that the graph of this law is a straight

line. Such a motion is called uniform. The name velocity

v of the motion designates the ratio of the path traversed

to the time required in doing so, or in symbols :

v = )
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In our example the point traverses \ cm. of path in each

second. The velocity remains the same throughout and

amounts to J cm. per sec.

The unit of velocity is already fixed by this definition
;

it is the velocity which the point would have if it traversed

i cm. per sec. It is said to be a derived unit, and, without

introducing a new value, we call it cm. per sec. or cm. /sec.

To express that the measurement of velocities may be referred

back to measurements of lengths and times in accordance with

formula (i) we also say that velocity has the dimensions length

divided by time, written thus : [v] = [_yj
or [L.T""1]. In the

same way we assign definite dimensions to every quantity

that allows itself to be built up of the fundamental quantities,

>x

length /, time t, and weight G. When the latter are known
the unit of the quantity may at once be expressed by means of

those of length, time, and weight, say, cm., sec. and grm.

In the case of great velocities the path % traversed in the

time t is great, thus the graph line has only a small inclination

to the x-axis : the smaller the velocity, the steeper the graph.

A point that is at rest has zero velocity and is represented

in our diagram by a straight line parallel to the i!-axis, for the

points of this straight line have the same value of % for all

times t (Fig. 9 a) .

If a point is firstly at rest and then at a certain moment
suddenly acquires a velocity and moves on with this velocity,

we get as the graph a straight line one part of which is bent,

the other being vertical (Fig. 9 b). Similarly broken lines
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represent the cases when a point that is initially moving uni-

formly for a while to the right or to the left suddenly changes

its velocity (Figs. 9 c and 9 d).

If the velocity before the sudden change is v
x (say, 3 cms.

per sec), and afterwards v t (say, 5 cms. per sec), then the

increase of velocity is v 2
— v x (that is, 5 — 3 = 2 cms. per sec,

added in each sec). If v 2 is less than v x
(say, v 1 =i cm. per

sec), then v z
— vt is negative (namely, 1 — 3 = — 2 cms. per

sec), and this clearly denotes that the moving point is suddenly

retarded.

If a point experiences a series of sudden changes of velocity

then the graph of its motion is a succession of straight lines

joined together (polygon) as in Fig. 10.

If the changes of velocity occur more and more frequently

t kt

->x fc-

FlQ. 10. Fig. 11.

and are sufficiently small, the polygon will no longer be dis-

tinguishable from a curved line. It then represents a motion

whose velocity is continually changing, that is, one which is

non-uniform, accelerated or retarded (Fig. 11).

An exact measure of the velocity and its change, accelera-

tion, can be obtained in this case only with the aid of the methods

of infinitesimal geometry. It suffices for us to imagine the

continuous curve replaced by a polygon whose straight sides

represent uniform motions with definite velocities. The bends

of the polygon, that is, the sudden changes of velocity, may

be supposed to succeed each other at equal intervals of time,

1
say, t = - sees.

If, in addition these changes are equally great, the motion

is said to be " uniformly accelerated." Let each such change
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of velocity have the value w, then if there are n per sec. the

total change of velocity per sec. is

(2)
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Then the velocity

after the first interval of time is : v
x
= w,

,, second ,, ,, v 2 = v x -f- w = 2w
„ third ,, ,, v3

= v 2 + w = 31V,

and so forth.

t

The point advances

after the first interval of time to : x, = v-

n

second ,, ,, x 2
= x

x -f v 2
- = (v x + v 2) -,

n n

third „ „ x9 =xt+vr-=(v1+vt+v9)-»
n n

and so forth.

After the nth. interval of time, that is, at the end of the time

/, the point will have arrived at

x= (v ± + v 2 + . . . vn )~.
n

But V 1
-\- V 2

-\- . . . Vn = IW + 2Z£> + Zw + • • • Htf'

= (1 + 2 + 3 + . . . n)w.

The sum of the numbers from 1 to n can be calculated quite

simply by adding the first and the last ; the second and the

second to last ; and so forth ; in each case we get for the sum

of the two numbers n + 1, and altogether we have — of such

sums or pairs. Thus we get 1 + 2 + . . . n = - (n -\- 1). If,

further, we replace w by b -, we get
11

n t . x bt bt
, , x

v x + v 2 + . . . vn= - (» + 1) - = - (n + 1),
2 w 2

thus ^ = — (n + 1) - = — (1 + -).
2 « 2 n

Here we may choose n to be as great as we please. Then

becomes arbitrarily small and we get

x=- bt 2
.

2

This signifies that in equal times the paths traversed are

proportional to the squares of the times. If, for example,
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the acceleration b = 10 metres per sec, then the point traverses

5 metres in the first sec, 5 . 2 2 = 5 . 4 = 20 metres in the second

sec, 5 . 3
2 = 45 in the third sec, and so forth. This relationship

is represented by a curved line, called a parabola, in the xt

plane (Fig. 13). If we compare the figure with Fig. 12 we see

how the polygon approximately represents the continuously

curved parabola. In both figures the acceleration b = 10

has been chosen, and this determines the appearance of the

curves, whereas the units of length and time are unessential.

We may also apply the conception of acceleration to non-

uniformly accelerated motions, by using instead of 1 sec. a

time of observation which is so small that, during it, the motion
may be regarded as uniformly accelerated. The acceleration

itself then becomes continuously variable.

All these definitions become rigorous and at the same time

convenient to handle if the process of sub-division into small

l

6

5

V

3

Z

1
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3. Motion in a Plane

If we wish to study the motion of a point in a plane, our

method of representation at once allows itself to be extended

to this case. We take in the plane an ^-co-ordinate system and

erect a rf-axis perpendicular to it (Fig. 14). Then a straight line

in the #y/-space corresponds to a rectilinear and uniform motion

Fig. 14. Fig. 15.

in the #y-plane. For if we project the points of the straight

line that correspond to the points of time t = o, I, 2, 3, . . .

on to the %y-plane, we see that the positional displacement
takes place along a straight line and at equal intervals.

Every non-rectilinear but uniform motion is said to be
accelerated even if, for example, a curved path is traversed with
constant velocity. For in this

case the direction of the velocity

changes although its numerical
value remains constant. An ac-

celerated motion is represented in

the #v/-plane (Fig. 15) by an arbi-

trary curve. The projection of

this curve into the ^y-plane is

the orbit in the plane (or plane-

orbit). The velocity and the ac-

celeration are again calculated by
supposing the curve replaced by
a polygon closely wrapped round the curve. At each corner

of this polygon not only the amount but also the direction of

the velocity alters. A more exact analysis of the conception

of acceleration would take us too far. It is sufficient to

mention that it is best to project the graph of the moving point

on to the co-ordinate axes x, y, and to follow out the rectilinear

motion of these two points, or what is the same, the change

-*~JT

Fig. 16.
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in time of the co-ordinates x, y. The conceptions denned for

rectilinear motions as given above may now be applied to these

projected motions. We thus get two components of velocity

vx , vy , and two components of acceleration bx , by , that together
fix the velocity or the acceleration of the moving point at

a given instant.

In the case of a plane motion (and also in one that occurs
in space) velocity and acceleration are thus directed magnitudes
(vectors). They have a definite direction and a definite magni-
tude. The latter can be calculated from the components.
For example, we get the direction and magnitude of the velocity

from the diagonal of the rectangle with the sides vx and vy
(Fig. 16). Thus, by Pythagoras' theorem, its magnitude is

v = VV + V • • • (3)

An exactly corresponding result holds for the acceleration.

4. Circular Motion

There is only one case which we wish to consider in greater
detail, namely, the motion of a point in a circular orbit with

Fig. 17.

constant speed (Fig. 17). According to what was said above,
it is an accelerated motion, since the direction of the velocity

constantly alters. If the motion were unaccelerated the moving
point would move forward from A in a straight line with the

uniform velocity v. But in reality the point is to remain on the

circle, and hence it must have a supplementary velocity or

acceleration that is directed to the central point M. This
is called the centripetal acceleration. It causes the velocity

at a neighbouring point B, which is reached after a short

interval t, to have a direction different from that at the point A.

From a point c we next draw the velocities at A and B in a
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separate diagram (Fig. 17), paying due regard to their magni-

tude and direction. Their magnitude will be the same, namely

v, since the circle is to be traversed

with constant speed, but their

direction is different. If we con-

nect the end-points D and E of

the two velocity lines, then the

connecting line is clearly the

supplementary velocity w, which
transforms the first velocity state

into the second. We thus get an

isosceles triangle CED, having the

base w and the sides v, and we at

once see that the angle a at the

vertex is equal to the angle sub-

tended by the arc AB, which the

point traverses, at the centre of

the circle. For the velocities at A and B are perpendicular

to the radii MA and MB, and hence include the same angle.

Consequently the two isosceles triangles MAB and CDE are

similar, and we get the proportion

Fig. 18.

DE
CD

AB
MA

Now DE = w, CD = v, and further, MA is equal to the

radius r of the circle, and AB is equal to the arc s except for

a small error that can be made as small as we please by choosing

the time-interval t sufficiently small.

Hence we have

w s sv— = - or w = —

.

v r r

S IS)We now divide by t and notice that - = v, —= 0. Hence
t t

the acceleration b = • (4)

that is, the centripetal acceleration is equal to the square of the

velocity in the circle divided by the radius.

This theorem, as we shall see, is the basis of one of the first

and most important empirical proofs of Newton's theory of

gravitation.

Perhaps it is not superfluous to have a clear idea of what
this uniform circular motion looks like in the graphical

representation in the *y£-space. This is obviously produced

by allowing the moving point to move upwards regularly



26 THE THEORY OF RELATIVITY

parallel to the *-axis during the circular motion. We thus get

a helix (screw line), which now represents the orbit and the course

of the motion in time completely. In Fig. 1 8 it is drawn on the

surface of a cylinder that has its base on the #y-plane.

5. Motion in Space

Our graphical method of representation fails for motions

in space, for in this case we have three space co-ordinates x, y, z,

and time has to be added as a fourth co-ordinate. But un-

fortunately our visual powers are confined to three-dimensional

space. The symbolic language of mathematics must now lend

us a helping hand. For the methods of analytical geometry

allow us to treat the properties and relationships of spatial

configurations as pure matters of calculation without requiring

us to use our visual power or to sketch figures. Indeed, this

process is much more powerful than geometric construction.

Above all, it is not bound to the dimensional number three

but is immediately applicable to spaces of four or more dimen-

sions. In the language of mathematics the conception of

a space of more than three dimensions is not at all mystical

but is simply an abbreviated expression of the fact that we
are dealing with things that allow themselves to be fully de-

termined by more than three number data. Thus the position

of a point at a given moment of time can be fixed only by
specifying four number data, the three space-co-ordinates

x, y, z and the time t. After we have learned to deal

with the xyt-spa.ce as a means of depicting plane motion

it will not be difficult also to regard the motions in three-

dimensional space in the light of curves in the xyzt-spa.ce.

This view of kinematics as geometry in a four-dimensional

xyzt-spa,ce has the advantage of allowing us to apply

the well-known laws of geometry to the study of motions.

But it has a still deeper significance that will become
clearly apparent in Einstein's theory. It will be shown that

the conceptions space and time, which are contents of experience

of quite different kinds, cannot be sharply differentiated at all

as objects of physical measurement. If physics is to retain

its maxim of recognizing as real only what is physically observ-

able it must combine the conceptions space and time to a

higher unity, namely, the four-dimensional xyzt-spa.ee. Min-

kowski called this the " world " (1908), by which he wished to

express that the element of all order of real things is not place

nor point of time but the " event " or the " world-point/' that

is, a place at a definite time. He called the graphical picture

of a moving point " world-line," an expression that we shall
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continue to use in the sequel. Rectilinear uniform motion

thus corresponds to a straight world-line, accelerated motion

to one that is curved.

6. Dynamics—The Law of Inertia

After these preliminaries we revert to the question with

which we started, namely, as to how forces generate motions.

The simplest case is that in which no forces are present at

all. A body at rest will then certainly not be set into motion.

The ancients had already made this discovery, but, above this,

they also believed the converse to be true, namely, that wherever

there is motion there must be forces that maintain them. This

view at once leads to difficulties if we reflect on why a stone

or a spear that has been thrown continues to move when it

has been released from the hand. It is clearly the latter that

has set it into motion, but its influence is at an end so soon as

the motion has actually begun. Ancient thinkers were much
troubled in trying to discover what forces actually maintain the

motion of the thrown stone. Galilei was the first to find the right

point of view. He observed that it is a prejudiced idea to as-

sume that wherever there is motion there must always be force.

Rather it must be asked what quantitative property of motion

has a regular relationship with force, whether it be the place

of the moving body, its velocity, its acceleration, or some
composite quantity dependent on all of these. No amount
of reflection will allow us to evolve an answer to these questions

by philosophy. We must address ourselves directly to nature.

The question which she gives is, firstly, that force has an influence

in effecting changes of velocity. No force is necessary to

maintain a motion in which the magnitude and the direction

of the velocity remain unaltered. And conversely, where

there are no forces, the magnitude and direction of the velocity

remain unaltered ; thus a body which is at rest remains at rest,

and one that is moving uniformly and rectilinearly continues to

move uniformly and rectilinearly.

This law of inertia (or of persistence) is by no means so

obvious as its simple expression might lead us to surmise.

For in our experience we do not know of bodies that are really

withdrawn from all influences from without, and if we use our

imaginations to picture how they travel on in their solitary

rectilinear paths with constant velocity throughout astronomic

space, we are at once confronted with the problem of the

absolutely straight path in space absolutely at rest, with which

we shall have to deal in detail later on. For the present, then,

we shall interpret the law of inertia in the restricted sense in

which Galilei meant it.
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Let us picture to ourselves a smooth exactly horizontal

table on which a smooth sphere is resting. This is kept pressed

against the table by its own weight, but we ascertain that it

requires no appreciable force to move the sphere quite slowly

on the table. Evidently there is no force acting in a horizontal

direction on the sphere, otherwise it would not itself remain at

rest at any point on the table.

But if we now give the sphere a velocity it will continue

to move in a straight line and will lose only very little of its

speed. This retardation was called a secondary effect by
Galilei, and it is to be ascribed to the friction of the table and
the air, even if the frictional forces cannot be proved to be

present by the statical methods with which we started. It

is just this depth of vision, which correctly differentiates what
is essential in an occurrence from disturbing subsidiary effects,

that characterizes the great investigator.

The law of inertia is at any rate confirmed for motion on
the table. It has been established that in the absence of forces

the velocity remains constant in direction and magnitude.

Consequently the forces will be associated with the change
of velocity, the acceleration. In what way they are associated

can again be decided only by experiment.

7. Impulses

We have presented the acceleration of a non-uniform

motion as a limiting case of sudden changes of velocity of brief

uniform motions. Hence we shall first have to enquire how
a single sudden change of velocity is produced by the application

of a force. For this a force must act for only a short time
;

it is then what we call an impulse or a blow. The result of such

a blow depends not only on the magnitude of the force but also

on the duration of the action, even if this is very short. We
therefore define the intensity of a blow or impulse as follows :

n impulses J, each of which consists of the force K acting

during the time t = — sees., will, if they follow each other with-
n

out appreciable pauses, have exactly the same effect as if the

force K were to continue to act throughout the whole second.

Thus we should have

J = ,
J
J = K,

t

or, J = ?K = <K . . . . (5)
n
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To visualize this, let us imagine a weight placed on one side

of a lever having equal arms (such as a balance), and suppose
a hammer to tap very quickly and evenly on the other side with
blows just powerful enough to preserve equilibrium except for

inappreciable fluctuations (Fig. 19). It is clear that we may
tap more weakly but more often, or more strongly and less often,

so long as the intensity J of the blow multiplied by the number
of blows n, or divided by the time t required by each blow,
always remains exactly equal to the weight K. This " Im-
pulse Balance " enables us to measure the intensity of blows
even when we cannot ascertain the duration and the force of each
one singly. We need only find the force K that keeps equili-

brium with n such equal blows per second (disregarding the
inappreciable trembling of the arms), then the magnitude of

each blow is the wth part of K.
The dimensions of impulse are [J] = [T . G], where G

denotes weight.

Fig. 19.

8. The Law of Impulses

We again consider the sphere on the table and study the

action of impulses on it. To do this we require a hammer
that may be swung, say, about a horizontal axis. Firstly,

we calibrate the power of the blows of our hammer for each
length of drop by means of our " impulse balance." Then we
allow it to impinge against the sphere resting on the table and
observe the velocity that it acquires through the blow by
measuring how many cms. it rolls in 1 sec. (Fig. 20). The result

is very simple.

The more powerful the blow the greater the velocity, the

relation being such that twice the blow imparts twice the velo-

city, three times the blow three times the velocity, and so forth,

that is, the velocity and the blow bear a constant ratio to each
other (they are proportional).

This is the fundamental law of dynamics, the so-called

law of impulse (or momentum) for the simple case when a body
is set into motion from rest. If the sphere already has a velocity

initially, the blow will increase or decrease it according as it



30 THE THEORY OF RELATIVITY

strikes the sphere in the rear or in the front. By a strong

counter-blow it is possible to reverse the direction of motion
of the sphere.

The law of impulse then states that the sudden changes of

velocity of the body are in the ratio of the impulses or blows that

produce them. The velocities are here considered as positive

or negative according to their direction.

9. Mass

Hitherto we have dealt with a single sphere. We shall

now perform the same impulse experiment with spheres of

different kinds, say, of different size or of different material,

some being solid and others hollow. Suppose all these spheres

to be set into motion by exactly equal blows or impulses.

Experiment shows that they then acquire quite different

Fig. 20.

velocities, and, indeed, it is at once observed that light spheres

are made to travel at great speed, but heavy ones roll away only

slowly. Thus we find a relationship with weight, into which
we shall enter into detail later, for it is one of the empirical

foundations of the general theory of relativity. But here, on
the contrary, we wish to bring out clearly and prominently

that from the abstract point of view the fact that various

spheres acquire various velocities after equally strong impacts

has nothing to do with weight. Weight acts downwards and
produces the pressure of the sphere on the table, but exerts no
horizontal force. We now find that one sphere opposes greater

resistance to the blow than another ; if the former is at the same
time the heavier, then this is a new fact of experience, but does

not from the point of view here adopted allow itself to be de-

duced from the conception of weight. What we establish is

a difference of resistance of the spheres to impacts. We call



LAWS OF CLASSICAL MECHANICS 3]

it inertial resistance, and measure it as the ratio of the impulse
or impact J to the velocity v generated. The name mass has
been chosen for this ratio, and it is denoted by the symbol w.
Thus we set

m = I
(6)

This formula states that for one and the same body an in-

crease of the impulse J calls up a greater velocity v in such a
way that their ratio has always the same value m. When
mass has been defined in this way its unit can no longer be
chosen at pleasure, because the units of velocity and of impulse
have already been fixed. Rather, mass has the dimensions

[«] - [™]

and its unit in the ordinary system of measures is sec. 2grm./cm.
In ordinary language the word mass denotes something like

amount of substance or quantity of matter, these conceptions
themselves being no further defined. The concept of substance,
as a category of the understanding, is counted among those
things that are directly given, i.e. are immediate data. In
physics, however—as we must very strongly emphasize—the
word mass has no meaning other than that given by formula (6)

.

It is the measure of the resistance to changes of velocity.

We may write the law of impulses more generally thus :

mw = J (7)

It determines the change of velocity w that a body in motion
experiences as the result of an impulse J.

The formula is often interpreted too as follows :

—

The given impulsive force J of the hammer is transferred
to the movable sphere. The hammer " loses " the impulse

J, and this impulse reappears in the motion of the sphere to the
same extent mw. This impulsive force carries the sphere along,

and when the latter itself impinges on another body, it, in its

turn, gives the latter a blow or impulse, and thereby loses

just as much impulse as the other body gains. For example,
if the bodies of mass mx and m 2 impinge against each other
rectilinearly (that is, whilst moving in the same straight line),

then the impulsive forces which they exert on each other are
always equal and opposite, that is, J x

= — J 2 , or their sum
is zero :

Ji + J 2 = mfv x + m 2w 2 = o . . . (8)
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From this it follows that

w 2
= — —

m,

that is, when one sphere loses velocity (w 1 negative), the other

gains velocity (w 2 positive), and vice versa.

If we introduce the velocities of the two spheres before and

after the impact, namely, v lf v^ for the first sphere, and v 2 , v 2

'

for the second, then the changes of velocity are

w x
= vj — v x w 2

= v 2
— v 2

and we may also write the equation (8) thus :

tn^Vi — vj + m 2 (v 2
— v 2)

= o

If we then collect all the quantities referring to the motion

before the impact on the one side, and all those referring to the

motion after the impact on the other, we get

m 1v 1 + m 2v 2
= m^v-l + m 2v 2 . . . (9)

and this equation may be interpreted as follows :

To bring a body of mass m from a state of rest into one in

which it has the velocity v we require the impulse mv ; it then

carries this impulse along with it. Thus the total impulse

carried along by the two spheres before the impact is m1v 1 +
m 2v 2 . The equation (9) then states that this total impulse

is not changed as a result of the impact. This is the law of

conservation of impulse or momentum.

10. Force and Acceleration

Before pursuing further the striking parallelism between

mass and weight we shall apply the laws so far established to

the case of forces that act continuously. Unfortunately, again,

the theorems can be set up rigorously only with the aid of the

methods of the infinitesimal calculus, yet the following considera-

tions may serve to give an approximate idea of the relationships

involved.

A force that acts continuously generates a motion whose

velocity alters continuously. We now suppose the force re-

placed by a rapid succession of blows or impulses. Then at each

blow the velocity will suffer a sudden change and a world-line

that is bent many times, as in Fig. 10, will result, and which

will fold closely around the true, uniformly curved, world-line

and will be able to be used in place of the latter in the calcula-

tions. Now if w blows per sec. replace the force K, then by (5)
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each of them has the value J = - K or = /K, where t is the short
n

interval occupied by each blow. At each impulse a change
of velocity w occurs which, according to (7), is determined by

w w
b, thus we get

10)

mw = J = tK, or m- = K. But, by (2),
t

mb = K .

This is the law of motion of dynamics for forces that act

continuously. It states in words that a force produces an
acceleration that is proportioned to it ; the constant ratio K : b

is the mass.

We may give this law still a different form which is advan-
tageous for many purposes, in particular for the generalization

that is necessary in the dynamics of Einstein (see VI, 7, p. 221).

For if the velocity v alters by the amount w, then the impulse
carried along by the moving body, namely, J = mv, alters by

mw.
mw

Thus we have mb =— , the change of the impulse carried

Fig. 21.

along in the time t required to

effect it. Accordingly we may
express the fundamental law ex-

pressed in formula (10) thus :

If a force K acts on a body,

then the impulse J — mv carried

along by the body changes in such

a way that its change per unit of
time is equal to the force K.

Expressed in this form the law
holds only for motions which take

place in a straight line and in

which the force acts in the same
straight line. If this is not the case, that is, if the force

acts obliquely to the momentary direction of motion the

law must be generalized somewhat. Let us suppose the force

drawn as an arrow which is then projected on to three mutually

perpendicular directions, say, the co-ordinate axes. In Fig.

21 the case is represented in which the force acts in the xy-

plane, and its projections on the x- and the jy-axis have been
drawn. Let us imagine the moving point projected on the

axes in the same way. Then each of the points of projection

executes a motion on its axis of projection. The law of motions
then states that the accelerations of these motions of projection

bear the relation mb — K to the corresponding components of

force. But we shall not enter more closely into these mathe-
matical generalizations, which involve no new conceptions.

3
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ii. Example—Elastic Vibrations

As an example of the relation between force, mass, and
acceleration we consider a body that can execute vibrations

under the action of elastic forces. We take, say, a straight

broad steel spring and fasten it at one end so that it lies hori-

zontally in its position of rest (and does not hang downwards).
It bears a sphere at the other end (Fig. 22). The sphere can
then swing to and fro in the horizontal plane (that of the page).

Gravity has no influence on its motion, which depends only

on the elastic force of the spring. When the displacements are

small the sphere moves almost in a straight line. Let its

direction of motion be the #-axis.

If we set the sphere into motion, it executes a periodic

vibration, the nature of which we can make clear to ourselves

as follows : If we displace the sphere slightly out of the position

of equilibrium with our hands, we experience the restoring

force of the spring. If we let the sphere go, this force imparts

to it an acceleration, which causes it to return to the mean
position with increasing velocity. In this process the restoring

force, and hence also the acceleration, continuously decreases,

and becomes zero when passing through the mean position

itself, for here the sphere is in equilibrium and no accelerative

force acts on it. At the place, therefore, at which the velocity

is greatest, the acceleration is least. In consequence of its

inertia the sphere passes rapidly through the position of equili-

brium, and then the force of the spring begins to retard it

and applies a brake, as it were, to the motion. When the orig-

inal deflection has been attained on the other side the velocity

has decreased to zero and the force has reached its highest

value. At the same time the acceleration has reached its

greatest value in reversing the direction of the velocity at this

moment. From this point onwards it repeats the process in

the reverse sense.

If we next replace the sphere by another of different mass
we see that the character of the motion remains the same
but the time of a vibration is changed. When the mass is

greater the motion is retarded, and the acceleration becomes
less ; a decrease of mass increases the number of vibrations

per sec.

In many cases the restoring force K may be assumed to be
exactly proportional to the deflection x. The course of the

motion may then be represented geometrically as follows :

Consider a movable point P on the circumference of a circle

of radius a, which is being traversed uniformly v times per

sec. by P. It then traverses the circumference, which is 27ra



LAWS OF CLASSICAL MECHANICS 35

(where tt == 3*14159 . . .), in the time T = - sees., thus its

velocity is
2tt(1

2-nav.

Let us now take the centre O of the circle as the origin of

a rectangular set of co-ordinates in which P has the co-ordinates

x, y. Then the point of projection A of the point P on the #-axis

will move to and fro during the motion just like the mass

fastened to the spring. This point A is to represent the vibrating

mass. If P moves forward along a small arc s, then A moves
t

along the .r-axis a small distance f, and we have v = j- as

the velocity of A. Fig. 23 now shows that the displacements f

^
/ B
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This change 77 of y corresponds to a change in the velocity

v = 2-nvy of the point A which is given by

w 27TV7) = 27TVS-,
a

and hence to an acceleration of A,

w s x
b = — = 2ttv- . - = (2ttv) 2X

t a

The acceleration in this vibrational motion of the point A
is thus actually at every moment proportional to the deflection

x. We get for the force

K = mb = m(27Tv) 2x.... (n)

By measuring the force corresponding to a deflection x and
by counting the vibrations we can
thus determine the mass m of the

spring pendulum.
The picture of the world-line of

such a vibration is clearly a wave-
line in the ^-plane, if x is the direc-

tion of vibration (Fig. 24). In the
figure it has been assumed that at

the time t = the sphere is moving
through the middle position x =
towards the right. We see that when-
ever the sphere passes through the

£-axis, that is, for x = 0, the direction

of the curve is most inclined to the

#-axis, and this indicates the greatest

velocity. Hence the curve is not
curved at this point, and the change
of velocity or the acceleration is zero.

The opposite is true of those points that correspond to the

extreme deflections.

Fig. 24.

12. Weight and Mass

At the beginning when we introduced the conception of

mass, we observed immediately that mass and weight exhibit

a remarkable parallelism. Heavy bodies offer a stronger

resistance to an accelerating force than light bodies. Is this,

then, an exact law ? As a matter of fact, it is. To have
the facts quite clear, let us again consider the experiment of

setting into motion spheres on a smooth horizontal table by
means of impacts or impulses. We take two spheres A and B,
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of which B is twice as heavy as A, that is, on the impulse balance

B exactly counterpoises two bodies each exactly like A. We
next apply equal blows to A and B on the table and observe

the velocity attained. We find that A rolls away twice as

quickly as B.

Thus the sphere B, which is twice as heavy as A, opposes

a change of velocity exactly twice as strongly as A. We may
also express this as follows : Bodies having twice the mass

have twice the weight ; or, more generally, the masses m are in

the ratio of the weights G. The ratio of the weight to the

mass is a perfectly definite number. It is denoted by g, and we
write

Q— = g or G = mg . . . (12)m

Of course, the experiment used to illustrate the law is very

rough.* But there are many other phenomena that prove the

same fact ; above all, there is the observed phenomenon that all

bodies fall equally fast. It is hereby assumed, of course, that

no forces other than gravity exert an influence on the motion.

This means that the experiment must be carried out in vacuo so

that the resistance of the air may be eliminated. For pur-

poses of demonstration an inclined plane (Fig. 25) is found

suitable, on which two spheres, similar in appearance but of

different weight, are allowed to roll down. It is observed that

they reach the bottom exactly simultaneously.

The weight is the driving force ; the mass determines the

resistance. If they are proportional to each other, then a

heavy body will indeed be driven forward more strongly than

a lighter one, but to balance this it resists the impelling force

more strongly, and the result is that the heavy and the light

body roll or fall down equally fast. We also see this from our

formulae. For if in (10) we replace the force by the weight G,

and assume the latter, by (12), proportional to the mass, we get

mb = G = mg
t

that is, b = g (13)

Thus all bodies have one and the same acceleration verti-

cally downwards, if they move under the influence of gravity

alone, whether they fall freely or are thrown. The quantity g,

the acceleration due to gravity, has the value

g = 981 cm./sec. 2(or 32 ft. /sec. 2
.).

* For example, we have neglected the circumstance that in producing the rotation

of the rolling sphere a resistance must also be overcome which depends on the distri-

bution of mass in the interior of the sphere (the moment of inertia).
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The most searching experiments for testing this law may
be carried out successfully with the aid of simple pendulums

with very fine threads. Newton even in his time noticed that

the times of swing are always the same for the same length

of pendulum, whatever the composition of the sphere of the

pendulum. The process of vibration is exactly the same as

that described above for the elastic pendulum, except that

now it is not a steel spring but gravity that pulls back the sphere.

We must imagine the force of gravity acting on the sphere

to be resolved into two components, one acting in the direction

of the continuation of the thread, and keeping it stretched,

the other acting in the direction of motion and being the driving

force that acts on the sphere or bob.

Fig. 26 exhibits the bob at the deflection x. We see at once

Fig. 25. Fig. 26.

the two similar right-angled triangles, the sides of which are

in the same proportion :

K = G
x I

'

Accordingly, formula (11) gives for two pendulums, the bobs

of which are G ± and G 2 , respectively :

(27TV) 2M 1

_G.
(27Tv)

2m 2
= -p

t

thus —2 = (27TV) n,
m.

that is, the ratio of the weight to the mass is the same for both

pendulums. We called this ratio g in formula (12). Hence
we get the equation

g = (27tv)H, .... (14)
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from which we see that g may be determined by measuring

the length / of the pendulum and the vibration number v.

The law of the proportionality of weight to mass is often

expressed as follows :

gravitational and inertial mass are equal.

Here gravitational mass simply signifies the weight divided

by g, and the proper mass is distinguished by prefixing the

word " inertial."

The fact that this law holds very exactly was already

known to Newton. Nowadays it has been confirmed by the

most delicate measurements known in physics, which were

carried out by Eotvos (1890). Hence we are completely justified

in using the balance to compare not only weights but also masses.

One might now imagine that such a law is firmly embedded

in the foundations of mechanics. Yet this is by no means the

case, as is shown by our account, which follows fairly closely the

ideas contained in classical mechanics. Rather, it is attached,

as a sort of curiosity, somewhat loosely to the fabric of the other

laws. Probably it has been a source of wonder to many,

but no one suspected or sought any deeper relationship that

might be wrapt in it. For there are many kinds of forces

that can act on a mass. Why should there not be one that is

exactly proportional to the mass ? A question to which no

answer is expected will receive none. And so the matter rested

for centuries. This was possible only because the successes

of the mechanics of Galilei and Newton were overwhelming

It controlled not only the motional events on the earth but

also those of the stars, and showed itself to be a trustworthy

foundation for the whole realm of the exact sciences. For

in the middle of the nineteenth century it was looked on as

the object of research to interpret all physical events as me-

chanical events in the sense of the Newtonian doctrine. And
thus in building up their stately edifice physicists forgot to

ascertain whether the basis was strong enough to support the

whole. Einstein was the first to recognize the importance

of the law of equality of inertial and gravitational mass for the

foundations of the physical sciences.

13. Analytical Mechanics

The problem of analytical mechanics is to find from the

law of motion
mb = K

the motion when the forces K are given. The formula itself

gives us only the acceleration, that is, the change of velocity.
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To get from the latter the velocity, and from this again the vary-

ing position of the moving point, is a problem of the integral

calculus that may be very difficult if the force alters in a com-
plicated way with the place and the time. An idea of the

nature of the problem is given by our derivation of the change
of position in a uniformly accelerated motion along a straight

line (p. 20). The motion is already more complicated when
it is in a plane and due to the action of a constant force of

definite direction, as in the case of a motion due to falling or

to a throw. Here, too, we may substitute as an approximation
for the continuous course of the motion one consisting of a

series of uniform motions, each of which is transformed into the

next by means of impulses. We again call to mind our table

and agree that the sphere rolling on it is to receive a blow of

the same size and direction after the same short interval t

(Fig. 27). Now, if the sphere starts off from the point O with
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magnitude and direction. But if these are given, the further

course of the motion is fully determined. Thus one and the
same law of force may produce an infinity of motions according
to the choice of the initial conditions. Thus the enormous
number of motions due to falling or to throws depends on the
same law of force, of gravity that acts vertically downwards.

In mechanical problems we are usually concerned with the
motion not of one body but of several that exert forces on one
another. The forces are then not themselves given but depend
for their part on the unknown motion. It is easy to under-
stand that the problem of determining the motions of several

bodies by calculation becomes highly complicated.

14. The Law of Energy

But there is a law which makes these problems much
simpler and affords a survey of the motion. It is the law of the

conservation of energy, which has become of very great impor-

Fig. 28. Fig. 29.

tance for the development of the physical sciences. We cannot,

of course, enunciate it generally here nor prove it. We shall

only seek to know its content from simple examples.

A pendulum which is released after the bob has been raised

to a certain point rises on the opposite side of the mean position

to the same height—except for a small error caused by friction

and the resistance of the air (Fig. 28). If we replace the cir-

cular orbit by some other by allowing the sphere to run on rails

as in a " toy railway " (Fig. 29), then the same result holds :

the sphere always rises to the same height as that from which

it started.

From this it easily follows that the velocity that the sphere

has at any point P of its path depends only on the depth of

this point P below the initial point A. To see this we imagine

the piece AP of the orbit changed, the rest PB remaining un-

altered. Now, if the sphere were to arrive at P along the one

orbit from A with a velocity different from that with which it

arrives along the other, then in its further course from P to B it
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would not in each case exactly reach its goal B. For, to achieve

this, a uniquely determinate velocity is clearly necessary at P.

Consequently the velocity at P does not depend on the form
of the piece of orbit traversed, and since P is an arbitrary point,

this result holds generally. Hence the velocity v must be
determined by the height of fall h alone. The truth of the law
depends on the circumstance that the path (the rails) as such
opposes no resistance to the motion, that is, exerts no force on
the sphere in its direction of motion, but receives only its

perpendicular pressure. If the rails are not present, we have
the case of a body falling freely or of one that has been thrown,
and the same result holds : the velocity at each point depends
only on the height of fall.

This fact may not only be established experimentally but
may also be derived from our laws of motion. We hereby also

get the form of the law that regulates the dependence of the

velocity on the height. We assert that it states the following :

Let x be the path fallen through, measured upwards (Fig

30), v the velocity, m the mass, and G the weight of the body.
Then the quantity

E = -v* + Gx . . . . (15)

has the same value during the whole process of falling.

To prove this we first suppose E to stand for any arbitrary

quantity that depends on the motion and hence alters from
moment to moment. Let E alter by the amount e in a small

interval of time t, then we shall call the ratio ~ the rate of
t

change of E, and, exactly as before in defining the orbital

velocity v and the acceleration b, we suppose that the time
interval t may be taken as small as we please. If the quantity
E does not change in the course of time, then its rate of change
is, of course, zero, and vice versa. We next form the change
of the above expression E in the time t. During this time
the height of fall x decreases by vt, and the velocity v increases

by w = bt. Hence after the time t the value of E becomes

E' = -(v + w) 2 + G (x - vt).

Now, (v -f w) 2 = V 2
-f- w 2

-f- 2VW.

This states that the square erected over v and w, joined

together in the same straight line, may be resolved into a square
having the side v, one having the side w, and two equal rectangles

having the sides v and w (Fig. 31).
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Hence we get

E' = — v 2 + — w2
-f twvw + Ox — Gvt.

2 2

If we deduct the old value of E from this, we get as the

change in value

m
e = YJ — E = — w 2 -{- mvw — Gvt,

2

or, since w — bt,

e = ? h 2
t
2 + mvbt - Gvt.

2

Hence the rate of change becomes

m
b 2

t -\- mvb — Gv.

w

Fig. 30.

v.w.
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the other. The first term is characteristic of the state of velo-

city of the body, the second, of the height that it has attained
against the force of gravitation. We have special names for

these terms.

T = — v 2 is called the vis viva or kinetic energy.

U = Gx is called the capacity for work or the potential

energy.

Their sum, T +U = E, . . . . (16)

is called simply the mechanical energy of the body ; and the
law which states that it remains constant during the motion
of the body is called the law of conservation of energy.

The dimensions of energy are [E] = [GL]. Its unit is

grm. cm.
The name capacity for doing work is of course derived from

the work done by the human body in lifting a weight. Accord-
ing to the law of conservation of energy this work becomes
transformed into kinetic energy in the process of falling. If,

on the other hand, we give a body kinetic energy by throwing
it upwards, this energy changes into potential energy or capacity
for doing work.

Exactly the same as has been described for falling motions,
holds in the widest sense for systems composed of any number
of bodies, so long as two conditions are fulfilled, namely :

i. External influences must not be involved, that is, the
system must be self-contained or isolated.

2. Phenomena must not occur in which mechanical energy
is transformed into heat, electrical tension, chemical
affinity, and such like.

If these are fulfilled the law that

E = T + U
always remains constant holds true, the kinetic energy de-
pending on the velocities, the potential energy on the positions
of the moving bodies.

In the mechanics of the heavenly bodies this ideal case is

realized very perfectly. Here the ideal dynamics of which we
have developed the principles is valid.

But on the earth this is by no means the case. Every
motion is subject to friction, whereby its energy is transformed
into heat. The machines by means of which we produce
motion, transform thermal, chemical, electric, and magnetic
forces into mechanical forces, and hence the law of energy in
its narrow mechanical form does not apply. But it may
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always be maintained in an extended form. If we call the heat

energy Q, the chemical energy C, the electro-magnetic energy

W, and so forth, then the law that for closed systems the sum

E = T + U + Q + C + W (i 7 )

is always constant holds.

It would lead us too far to pursue the discovery and logical

evolution of this fact by Robert Mayer, Joule (1842) and

Helmholtz (1847), or to investigate how the non-mechanical

forms of energy are determined quantitatively. But we shall

use the conception of energy later when we speak of the intimate

relationship that the theory of relativity has disclosed between

mass and energy.

15. Dynamical Units of Force and Mass

The validity of the process by which we have derived the

fundamental laws of mechanics is, in a certain sense, restricted

to the surface of our table and its immediate neighbourhood.

For we have abstracted our conceptions and laws from ex-

periments in a very limited space, in the laboratory. The

advantage of this is that we need not trouble our heads about

the assumption concerning space and time. The rectilinear

motions with which the law of inertia deals may be copied

on the table with a ruler. Apparatus and clocks are assumed

to be available for measuring the orbits and the motions.

Our next concern will be to step out of the narrow confines

of our rooms into the wider world of astronomic space. The

first stage will be a " voyage round the world " which idiomatic

usage applies to the small globe of the earth. We shall pose

the question : do all the laws of mechanics set up apply just

as much in a laboratory in Buenos Aires or in Capetown as

here ?

Yes, they do, with one exception, namely, the value of the

gravitational acceleration g. We have seen that this can be

measured exactly by observations of pendulums. It has been

found that one and the same pendulum swings somewhat more

slowly at the equator than in the more southerly or more nor-

therly regions. Fewer vibrations occur in the course of a day,

that is, in the course of one rotation of the earth. From this

it follows that g has a minimum value at the equator and

increases towards the north and the south. This increase is

quite regular as far as the poles, where g has its greatest value.

We shall see later to what this is due. Here we merely take

note of the fact. For the system which we have hitherto used

for measuring forces and masses this fact, however, has very

awkward consequences.
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So long as weights are compared with each other only by
means of the scale balance, there are no difficulties. But let us

imagine a spring balance here in the laboratory which has been

calibrated with weights. If we then bring this spring balance

into more southerly or more northerly regions, we shall find that

when loaded with the same weights it will give different de-

flections. If, therefore, we identify weight with force as we
have hitherto done, there is nothing left for us but to assert

that the force of the spring has altered and that it depends

on the geographical latitude. But this is obviously not the

case. It is not the force of the spring that has altered but the

gravitational force. It is, therefore, wrong to take the weight

of one and the same piece of metal as the unit of force at all

points of the earth. We may choose the weight of a definite

body at a definite point on the earth as the unit of force, and
this may be applied at other points if the acceleration g
due to gravity is known by pendulum measurements at

both points. This is, indeed, just what technical science

actually does do. Its unit of force is the weight of a definite

normal body in Paris, the gramme. Hitherto we have always

used this without taking into account its variability with

position. In exact measurements, however, the value must
be reduced to that at the normal place (Paris).

Science has departed from this system of measures, at which

one place on the earth is favoured, and has selected a system

that is less arbitrary.

The fundamental law of mechanics itself offers a suitable

method for doing this. Instead of referring the mass to the

force, we establish the mass as the fundamental quantity of

the independent dimensions [M] and choose its unit arbitrarily :

let a definite piece of metal have the mass I. As a matter of

fact, the same piece of metal that served technical science as

the unit of weight, the Paris gramme, is taken for this purpose,

and this unit of mass is likewise called the gramme (grm.).

The fact that the same word is used in technical science

to denote the unit of weight and in physics to denote the unit

of mass may easily lead to error. In the sequel we use the

physical system of measure, the fundamental units of which
are : cm. for length, sec. for time, grm. for mass.

Force now has the derived dimensions

[K] = [MB] = [*£]

and the unit, called the dyne, is grm. cm. /sec. 2

Weight is defined by G = mg ; thus the unit of mass has

the weight G = g dynes, It changes with the geographical
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latitude, and in our own latitude it has the value g = 981 dynes.

This is the technical unit of force. The weight given by a

spring balance, expressed in dynes, is, of course, a constant
;

for its power of accelerating a definite mass is independent

of the geographical latitude.

The dimensions of impulse or momentum are now :

[j] = [TK] = pjr]

and its unit is grin. cm. /sec. Finally, the dimensions of energy

are

[E] = [MV«] = [^]
2and its unit is grm. cm. 2/sec.

Now that we have cleansed the system of measures of all

earthly impurities, we can proceed to the mechanics of the

stars.



CHAPTER III

THE NEWTONIAN WORLD-SYSTEM

i. Absolute Space and Absolute Time

THE principles of mechanics, as here developed, were

partly suggested to Newton by Galilei's works and were

partly created by himself. To him we owe above all

the expression of definitions and laws in such a generalized

form that they appear detached from earthly experiments

and allow themselves to be applied to events in astronomic

space.

In the first place Newton had to preface the actual mechanical

principles by making definite assertions about space and time.

Without such determinations even the simplest law of mechanics,

that of inertia, has no sense. According to this, a body on which

no force is acting is to move uniformly in a straight line. Let

us fix our thoughts on the table with which we first experi-

mented in conjunction with the rolling sphere. If now the

sphere rolls on the table in a straight line, an observer who
follows and measures its path from another planet would have

to assert that the path is not a straight line according to his

point of view. For the earth itself is rotating, and it is clear

that a motion that appears rectilinear to the observer travelling

with the earth, because it leaves the trace of a straight line

on his table, must appear curved to another observer who does

not participate in the rotation of the earth. This may be

roughly illustrated as follows :

A circular disc of white cardboard is mounted on an axis

so that it can be turned by means of a handle. A ruler is fixed

in front of the disc. Now turn the disc as uniformly as possible,

and at the same time draw a pencil along the ruler with constant

velocity, so that the pencil marks its course on the disc. This

path will, of course, not be a straight line on the disc, but a

curved line, which will even take the form of a loop if the

rotary motion is sufficiently rapid. Thus, the same motion

which an observer fixed to the ruler would call uniform and

rectilinear, would be called curvilinear (and non-uniform)

by an observer moving with the disc, This motion may be

48
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constructed point for point, as is illustrated in the drawing
(Fig. 32), which explains itself.

This example shows clearly that the law of inertia has
sense, indeed, only when the space, or rather, the system of

reference in which the rectilinear character of the motion is

to hold, is exactly specified.

It is in conformity with the Copernican world-picture,
of course, not to regard the earth as the system of reference,

for which the law of inertia holds, but one that is somehow
fixed in astronomic space. In experiments on the earth, for

example, rolling the sphere on the table, the path of the freely

moving body is not then in reality straight but a little curved.
The fact that this escapes our primitive type of observation
is due only to the shortness of the paths used in the experi-
ments compared with the dimensions of the earth. Here,
as has often happened in science, the inaccuracy of observation

Fig. 32.

has led to the discovery of a great relationship. If Galilei

had been able to make observations as refined as those of later

centuries the confused mass of phenomena would have made
the discovery of the laws much more difficult. Perhaps, too,

Kepler would never have unravelled the motions of the planets,

if the orbits had been known to him as accurately as at the

present day. For Kepler's ellipses are only approximations
from which the real orbits differ considerably in long periods

of time. The position was similar, for example, in the case

of modern physics with regard to the regularities of spectra
;

the discovery of simple relationships was rendered much more
difficult and was considerably delayed by the abundance of

very exact data of observation.

So Newton was confronted with the task of finding the

system of reference in which the law of inertia and, further,

all the other laws of mechanics were to hold. If he had chosen
the sun, the question would not have been solved, but would

4
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only have been postponed, for the sun might one day be dis-

covered also to be in motion, as has actually happened in the

meantime.
Probably it was for such reasons that Newton gained the

conviction that an empirical system of reference fixed by ma-
terial bodies could, indeed, never be the foundation of a law

involving the idea of inertia. But the law itself, through

its close connection with Euclid's doctrine of space, the element

of which is the straight line, appears as the natural starting-

point of the dynamics of astronomic space. It is, indeed, in

the law of inertia that Euclidean space manifests itself outside

the narrow limits of the earth. Similar conditions obtain in

the case of time, the flow of which receives expression in the

uniform motion due to inertia.

In this way, possibly, Newton came to the conclusion that

there is an absolute space and an absolute time. It will be best

to give the substance of his own words. Concerning time

he says :

I. " Absolute, true and mathematical time flows in itself

and in virtue of its nature uniformly and without reference to

any external object whatever. It is also called duration/'
" Relative, apparent, and ordinary time is a perceptible

and external, either exact or unequal, measure of duration,

which we customarily use instead of true time, such as hour,

day, month, year."
" Natural days, which are usually considered as equal

measures of time are really unequal. This inequality is some-
what corrected by the astronomers who measure the motion
of the heavenly bodies according to the correct time. It may
be that there is uniform motion by which time may be measured
accurately. All motions may be accelerated or retarded.

Only the flow of absolute time cannot be changed. The
same duration and the same persistence occurs in the existence

of all things, whether the motions be rapid, slow, or zero."

Concerning space Newton expresses similar opinions. He
says :

II. " Absolute space, in virtue of its nature and without

reference to any external object whatsoever, always remains

immutable and immovable."
" Relative space is a measure or a movable part of the

absolute space. Our senses designate it by its position with

respect to other bodies. It is usually mistaken for the im-

movable space."

"So in human matters we, not inappropriately, make use

of relative places and motions instead of absolute places and
motions. In natural science, however, we must abstract from
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the data of the senses. For it may be the case that no body
that is really at rest exists, with reference to which we may
refer the places and the motion."

The definite statement, both in the definition of absolute

time as in that of absolute space, that these two quantities

exist " without reference to any external object whatsoever
"

seems strange in an investigator of Newton's attitude of mind.
For he often emphasizes that he wishes to investigate only
what is actual, what is ascertainable by observation. " Hypo-
theses non fingo," is his brief and definite expression. But
what exists " without reference to any external object what-
soever " is not ascertainable, and is not a fact. Here we have
clearly a case in which the ideas of unanalysed consciousness

are applied without reflection to the objective world. We
shall investigate the question in detail later on.

Our next task is to describe how Newton interpreted the

laws of the cosmos and in what the advance due to his doctrine

consisted.

2. Newton's Law of Attraction

Newton's idea consisted in setting up a dynamical idea

of planetary orbits, or, as we
nowadays express it, in founding
Celestial Mechanics. To do this

it was necessary to apply Galilei's

conception of force to the motions
of the stars. Yet Newton did not

find the law according to which
the heavenly bodies act on one
another by setting up bold hypo-
theses, but by pursuing the syste-

matic and exact path of analysing

the known facts of planetary mo-
tions. These facts were expressed in the three Kepler laws

that compressed all the observations of that period of time
into a wonderfully concise and vivid form. We must here

state Kepler's laws in full. They are :

i. The planets move in ellipses with the sun at one of the

foci (Fig. 33).

2. The radius vector drawn from the sun to a planet de-

scribes equal areas in equal times.

3. The cubes of the major axes of the ellipses are propor-

tional to the squares of the periods of revolution.

Now the fundamental law of mechanics gives a relation

between the acceleration b of the motion, and the force K that

Fig. 33.
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produces it. The acceleration b is completely determined by
the course of the motion, and, if this is known, b can be calculated.

Newton recognized that the orbit as defined by Kepler's laws

just sufficed to allow a calculation of b. Then the law

K = mb

also allows the acting force to be calculated.

The ordinary mathematics of Newton's time would not have

enabled him to carry out this calculation. He had first to

invent the mathematical apparatus. Thus there was created

in England the Differential and Integral Calculus, the root of

the whole of modern mathematics, as a bye-product of astro-

nomical researches, whereas Leibniz (1684) simultaneously

invented the same method on the continent by starting from

a totally different point of view.

Since we do not wish to use the infinitesimal calculus in

this book we cannot pause to give a picture of the wonderful

nature of Newton's inferences. Yet the fundamental idea

may be illustrated by a simple example.

The orbits of the planets are slightly eccentric ellipses,

that are almost of a circular shape. It will be permissible to

assume approximately that the planets describe circles about

the sun, as was, indeed, supposed by Copernicus. Since circles

are special ellipses with the eccentricity zero, this assumption

certainly fulfils Kepler's first law.

The second law next states that every planet traverses its

circle with constant speed. Now, by II 4, we know all about

the acceleration in such circular motions. It is directed to-

wards the centre and, by formula (4), p. 25, it has the value

r

where v = the speed in the orbit, and r is the radius of the

circle.

If now T is the period of revolution, the velocity is deter-

mined as the ratio of the circumference 27Tr(7T = 3-14159 . . .)

to the time T, thus

27Tr /tQ\v =— . . . . (18)

so that = ^-^ = =Vr
ri 2 1-

We next direct our attention to the third Kepler law which,

in the case of a circular orbit, clearly states that the ratio of
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the cube of the radius, r3 , to the square of the time of revolution

T 2
, has the same value C for all planets :

Ti
= C or

T*
= ;t

(I9)

If we insert this in the value for b above, we get

b = *"S
. . . . (20)

r 2

According to this the value of the centripetal acceleration

depends only on the distance of the planet from the sun, being

inversely proportional to the square of the distance, but it is

quite independent of the properties of the planet, such as its

mass. For the quantity C is, by Kepler's third law, the same
for all planets, and can therefore involve at most the nature

of the sun and not that of the planets.

Now, it is a remarkable circumstance that exactly the same
law comes out for elliptic orbits—by a rather more laborious

calculation, it is true. The acceleration is always directed

towards the sun situated at a focus, and has the value given

by formula (20).

3. General Gravitation

The law of acceleration thus found has an important property

in common with the gravitational force on the earth (weight) :

it is quite independent of the nature of the moving body.

If we calculate the force from the acceleration, we find it like-

wise directed towards the sun. It is thus an attraction and
has the value

K = mb = m—— . . . (21)
r 2

It is proportional to the mass of the moving body, just like

the weight
G = mg

of a body on the earth.

This fact suggests to us that both forces may have one and
the same origin. Nowadays, this circumstance, having been

handed down to us through the centuries, has become such

a truism, as it were, that we can scarcely conceive how bold

and how great was Newton's idea. What a prodigious imagi-

nation it required to conceive the motion of the planets about

the sun or of the moon about the earth as a process of " falling
"

that takes place according to the same laws and under the action

of the same force as the falling of a stone released by my hand.

The fact that the planets or the moon do not actually rush
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into their central bodies of attraction is due to the law of

inertia that here expresses itself as a centrifugal force. We
shall have to deal with this again later.

Newton first tested this idea of general weight or gravitation

in the case of the moon, the distance of which from the earth

was known from angular measurements.

This test is so important that we shall repeat the very

simple calculation here as evidence of the fact that all scien-

tific ideas become valid and of worth only when calculated and

measured numerical values agree.

The central body is now the earth ; the moon takes the

place of the planet, r denotes the radius of the moon's orbit,

T the period of revolution of the moon. Let the radius of the

earth be a. If the gravitational force on the earth is to have

the same origin as the attraction that the moon experiences

from the earth, then the acceleration g due to gravity must,

by Newton's law (20), have the form

47T 2C

where C has the same value as for the moon, namely, by (19),

r*
L -

f"»"

If we insert this value in that for g, we get

g
-W

. . . (22:TV
Now, the " sidereal " period of revolution of the moon,

that is, the time between two positions in which the line con-

necting the earth to the moon has the same direction with

respect to the stars, is

T = 27 days 7 hours 43 minutes 12 seconds

= 2,360,592 seconds.

In physics it is customary to write down a number to only

so many places as are required for further calculation. So

we write here

T = 2-36 . io6 sees.

The distance of the moon from the centre of the earth is

about 60 times the earth's radius, or, more exactly,

r = 6o-ia.

The earth's radius itself is easy to remember because the

metric system of measures is simply related to it. For 1 metre

= 100 cms. = one ten-millionth of the earth's quadrant, that
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is, the forty-millionth part or (4 . io7
)

th part of the earth's

circumference 2na

100 = , or a = 6-37 . io8 cms. . . (21)
4 . io7 v J/

If we insert all these values in (22) we get

att 2
. 6o-i 3

. 6-37 . io8
, 2 , .

g = -1 _ 4Z == q8i cm. /sec. 2
. (24)6 2-36* . io 12 J l K ^'

This value agrees exactly with that found by pendulum
observations on the earth (see II, 12, p. 37).

The great importance of this result is that it represents the

relativization of the force of weight. To the ancients weight
denoted a pull towards the absolute " below," which is ex-

perienced by all earthly bodies. The discovery of the spherical

shape of the earth brought with it the relativization of the

direction of earthly weight ; it became a pull towards the

centre of the earth.

And now the identity of earthly weight with the force of

attraction that keeps the moon in her orbit is proved, and since

there can be no doubt that the latter is similar in nature to

the force that keeps the earth and the other planets in their

orbits round the sun, we get the idea that bodies are not simply
" heavy " but are mutually heavy or heavy relatively to each

other. The earth, being a planet, is attracted towards the sun,

but it itself attracts the moon. Obviously this is only an ap-

proximate description of the true state of affairs, which consists

in the sun, moon, and earth attracting each other. Certainly,

so far as the orbit of the earth round the sun is concerned, the

latter may, to a high degree of approximation, be regarded

as at rest, because its enormous mass hinders the calling up
of appreciable accelerations, and, conversely, the moon, on

account of its size, does not come into account. But an exact

theory will have to take into consideration these influences,

called " perturbations."

Before we begin to consider more closely this view, which

signifies the chief advance of Newton's theory, we shall give

Newton's law its final form. We saw that a planet situated

at a distance r from the sun experiences from it an attraction

of the value (21)

ir Att 2C

r 2

where C is a constant depending only on the properties of the

sun, not on those of the planet. Now, according to the new
view of mutual or relative weight the planet must likewise
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attract the sun. If M is the mass of the sun, c a constant

dependent only on the nature of the planet, then the force

exerted on the sun by the planet must be expressed by

K' = M^!f.

But earlier, in introducing the conception of force (II, i,

p. 16), we made use of the principle that the reaction equals

the action, which is one of the simplest and most certain laws
of mechanics. If we apply it here, we must set K = K', or
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is necessarily a Kepler elliptic motion. A new feature aria

only when, firstly, we now regard both bodies as moving and,

secondly, add further bodies in the problem.

Then we get the problem of three or more bodies, which cor-

responds exactly to the actual conditions in the planetary

system (Fig. 34). For not only are the planets attracted by

the sun and the moons by their planets, but every body, be it

sun, planet, moon, or comet, attracts every other body. Ac-

cordingly, the Kepler ellipses appear to be only approximately

valid, and they are so only because the sun on account of its

great mass overshadows by far the reciprocal action of all

other bodies of the planetary system. But in long periods

of time these reciprocal actions must al?o manifest themselves

as deviations from the Kepler laws. We speak, as already

remarked, of " perturbations."

In Newton's time such perturbations were already known,

and in the succeeding centuries refinements in the methods of

observation have accumulated an immense number of facts

that had to be accounted for by
Newton's theory. That it suc-

ceeded in doing so is one of the

greatest triumphs of human genius.

It is not our aim here to pursue

the development of mechanics from
Newton's time to the present day,

and to describe the mathematical

methods that were devised to calcu-

late the " perturbed " orbits. The Fig. 34.

most ingenious mathematicians of

all countries have played a part in setting up the " theory of

perturbations," and even if no satisfactory solution has yet

been found for the problem of three bodies, it is possible to

calculate with certainty the motions for hundred thousands

or millions of years ahead or back. So Newton's theory was

tested in countless cases in new observations, and it has never

failed—except in one case, of which we shall presently speak.

Theoretical astronomy, as founded by Newton, was therefore

long regarded as a model for the exact sciences. It achieved

what had been the longing of mankind since earliest history.

It lifts the veil that is spread over the future ;
it endows its

followers with the gift of prophecy. Even if the subject-

matter of astronomic predictions is unimportant or indifferent

for human life, yet it became a symbol for the liberation

of the spirit from the trammels of earthly bonds. We, too,

follow the peoples of earlier times in gazing upwards with rever-

ential awe at the stars, which reveal to us the law of the world.
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But the world-law can tolerate no exception. Yet there

is one case, as we have already mentioned, in which Newton's
theory has failed. Although the error is small, it is not to be
denied. It occurs in the case of the planet Mercury, the planet
nearest the sun. The orbit of any planet may be regarded
as a Kepler elliptic motion that is perturbed by the other planets,

that is, the position of the orbital plane, the position of the
major axis of the ellipse, its eccentricity, in short, all " elements
of the orbit " undergo gradual changes. If we calculate these
according to Newton's law and apply them to the observed
orbit, it must become transformed into an exact Kepler orbit,

that is, an ellipse in a definite plane at rest, with a major axis

of definite direction and length, and so forth. This is so,

indeed, for all planets, except that a little error remains in the
case of Mercury. The direction of the major axis, that is,

the line connecting the sun with the nearest focus, the peri-

helion (Fig. 35), does not remain fixed after all the above cor-

rections have been applied, but executes a very slow motion

Earth

Perihelion

Fig. 35.

of rotation, advancing 43 sees, of arc every hundred years.

The astronomer Leverrier (1845)—the same who predicted the
existence of the planet Neptune from calculations based on
the perturbations—first calculated this motion, and it is fully

established. Yet it cannot be explained by the Newtonian attrac-

tion of the planetary bodies known to us. Hence recourse has
been taken to hypothetical masses whose attraction was to bring
about the motion of Mercury's perihelion. Thus, for example,
the zodiacal light, which is supposed to emanate from thinly

distributed nebulous matter in the neighbourhood of the
sun, was brought into relation with the anomaly of Mercury.
But this and numerous other hypotheses all suffer from the
fault that they have been invented ad hoc and have been con-
firmed by no other observation.

The fact that the only quite definitely established deviation
from Newton's law occurs in the case of Mercury, the planet
nearest the sun, indicates that perhaps there is after all some
fundamental defect in the law. For the force of attraction
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is greatest in the proximity of the sun, and hence deviations

from the law of the inverse square will show themselves first

there. Such changes have also been made, but as they are

invented quite arbitrarily and can be tested by no other facts,

their correctness is not proved by accounting for the motion
of Mercury's perihelion. If Newton's theory really requires

a refinement we must demand that it emanates, without the
introduction of arbitrary constants, from a principle that is

superior to the existing doctrine in generality and intrinsic

probability.

Einstein was the first to succeed in doing this by making
general relativity the most fundamental postulate of physical

laws. We shall revert in the last chapter to his explanation

of the motion of Mercury's perihelion.

5. The Relativity Principle of Classical Mechanics

In discussing the great problems of the cosmos we have
almost forgotten the point of departure from the earth. The
laws of dynamics found to hold on the earth were transplanted

to the astronomical space through which the earth rushes

in its orbit about the sun with stupendous speed. How is it,

then, that we notice so little of this journey through space ?

How is it that Galilei succeeded in finding laws on the moving
earth which, according to Newton, were to be rigorously valid

only in space absolutely at rest ? We have called attention

to this question above when mentioning Newton's views
about space and time. We stated there that the apparently
straight path of a sphere rolling on the table would, in reality,

owing to the rotation of the earth, be slightly curved, for the

path is straight not with respect to the moving earth but with
respect to absolute space. The fact that we do not notice

this curvature is due to the shortness of the path and of the

time of observation, during which the earth has turned only
slightly. Even if we admit this, we are still left with the

motion of revolution about the sun, which proceeds with the

immense speed of 30 kms. per sec. Why do we notice nothing
of this ?

This motion, due to the revolution, is also, indeed, a rotation,

and this must make itself remarked in earthly motions similarly

to the rotation of the earth on its own axis, only much less,

since the curvature of the earth's orbit is very small. But
in our question we do not mean this rotatory motion but the

forward motion, which, in the course of a day, is practically

rectilinear and uniform.

Actuallv, all mechanical events on the earth occur as if this
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tremendous forward motion does not exist, and this law holds

quite generally for every system of bodies that executes a
uniform and rectilinear motion through Newton's absolute

space. This is called the relativity principle of classical me-
chanics, and it may be formulated in various ways. For the

present, we shall enunciate it as follows :

Relatively to a co-ordinate system moving rectilinearly and
uniformly through absolute space the laws of mechanics have

exactly the same expression as when referred to a co-ordinate system

at rest in space.

To see the truth of this law we need only keep clear in our
minds the fundamental law of mechanics, the law of impulses,

and the conceptions that occur in it. We know that a blow
produces a change of velocity. But such a change is quite

independent of whether the velocities before and after the

blow, v 1 and v 2 , are referred to absolute space or to a system
of reference which is itself moving with the constant velocity a.

If the moving body is moving before the blow in space with
the velocity v x

= 5 cms. per sec, then an observer moving with
the velocity a = 2 cms. per sec. in the same direction would
measure only the relative velocity v^ = v ±

— a= 5 — 2 = 3.

If the body now experiences a blow in the direction of motion
which magnifies its velocity to v 2

= 7 cms. per sec, then the

moving observer would measure the final velocity as v 2
' = v 2

—
a = 7 — 2 = 5. Thus the change of velocity produced by the

blow is w — v 2
— v 1

= 7 — 5 = 2 in absolute space. On the

other hand the moving observer notes the increase of velocity as

w' = v 2
— Vi = (v 2

— a) — {v 1
—a) = v 2

— v ±
= w = 5 — 3 = 2.

Both are of the same value.

Exactly the same holds for continuous forces and for the

accelerations produced by them. For the acceleration b was
defined as the ratio of the change of velocity w to the time t

required in changing it, and since w is independent of whatever
rectilinear uniform forward motion (motion of translation)

the system of reference used for the measurement has, the same
holds for b.

The root of this law is clearly the law of inertia, according

to which a motion of translation occurs when no forces act. A
system of bodies, all of which travel through space with the

same constant velocity, is hence not only at rest as regards

their geometric configuration, but also no actions of forces

manifest themselves on the bodies of the system in consequence
of the motion. But if the bodies of the system exert forces

on each other, the motions thereby produced will occur relatively

just as if the common motion of translation were not taking
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place. Thus, for an observer moving with the system, it would
not be distinguishable from one at rest.

The experience, repeated daily and thousands of times,

that we observe nothing of the translatory motion of the earth

is a tangible proof of this law. But the same fact manifests

itself in motions on the earth. For when a motion on the earth

is rectilinear and uniform with respect to the earth, it is so

also with respect to space, if we disregard the rotation in the

earth's motion. Everyone knows that in a ship or a railway

carriage moving uniformly mechanical events occur in the

same way as on the earth (considered at rest). On the moving
ship, too, for example, a stone falls vertically ; it falls along

a vertical that is moving with the ship. If the ship were to

move quite uniformly and without jerks of any kind the

passengers would notice nothing of the motion so long as they

did not observe the apparent movement of the surroundings.

6. Limited Absolute Space

The law of the relativity of mechanical events is the starting-

point of all our later arguments. Its importance rests on the

fact that it is intimately connected with Newton's views on the

absolute space, and essentially limits the physical reality of this

conception from the outset.

We gave as the reason that made it necessary to assume

absolute space and absolute time that without it the law

of inertia would be utterly meaningless. We must now enter

into the question as to how far these conceptions deserve

the terms " real " in the sense of physics. A conception has

physical reality only when there is something ascertainable

by measurement corresponding to it in the world of phenomena.

This is not the place to enter into a discussion on the philo-

sophic conception of reality. At any rate it is quite certain

that the criterion of reality just given corresponds fully with

the way reality is used in the physical sciences. Every con-

ception that does not satisfy it has gradually been pushed out

of the system of physics.

We see at once that in this sense a definite place in Newton's

absolute space is nothing real. For it is fundamentally im-

possible to find the same place a second time in space.

This is clear at once from the principle of relativity. Given

that we had somehow arrived at the assumption that a definite

system of reference is at rest in space, then a system of refer-

ence moving uniformly and rectilinearly with respect to it

may with equal right be regarded as at rest. The mechanical

events in both occur quite similarly and neither system enjoys
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preference over the other. A definite body that seems at rest

in the one system of rest performs a rectilinear and uniform
motion, as seen from the other system, and if anyone were to

assert that this body marks a spot in absolute space, another
may with equal right challenge this and declare the body to

be moving.
In this way the absolute space of Newton already loses

a considerable part of its weird existence. A space in which
there is no place that can be marked by any physical means
whatsoever, is at any rate a very subtle configuration, and not
simply a box into which material things are crammed.

We must now also alter the terms used in our definition

of the principle of relativity, for in it we still spoke of a co-

ordinate system at rest in absolute space, and this is clearly

without sense physically. To arrive at a definite formulation
the conception of inertial system {inertia = laziness) has been
introduced, and it is taken to signify a co-ordinate system in

which the law of inertia holds in its original form. There is

not only the one system at rest as in Newton's absolute space,

where this is the case, but an infinite number of others that are

all equally justified, and since we cannot well speak of several
" spaces " moving with respect to each other, we prefer to

avoid the word " space " as much as possible. The principle

of relativity then assumes the following form :

There are an infinite number of equally justifiable systems,

inertial systems, executing a motion of translation with respect

to each other, in which the laws of mechanics hold in their simple

classical form.
We here see clearly how intimately the problem of space

is connected with mechanics. It is not space that is there

and that impresses its form on things, but the things and their

physical laws determine space. We shall find later how this

view gains more and more ground until it reaches its climax
in the general theory of relativity of Einstein.

7. Galilei Transformations

Although the laws of mechanics are the same in all inertial

systems, it does not of course follow that co-ordinates and
velocities of bodies with respect to two inertial systems in

relative motion are equal. If, for example, a body is at rest

in a system S, then it has a constant velocity with respect to

the other system S', moving relatively to S. The general

laws of mechanics contain only the accelerations, and these,

as we saw, are the same for all inertial systems. This is not
true of the co-ordinates and the velocities.
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Hence the problem arises to find the position and the velo-

city of a body in an inertial system S' when they are given

for another inertial system S.

It is thus a question of passing from one co-ordinate system

to another, which is moving relatively to the former. We
must at this stage interpose a few remarks about equivalent

(equally justified) co-ordinate systems in general and about

the laws, the so-called transformation equations, that allow us

to pass from one to the other by calculation.

In geometry co-ordinate systems are a means of fixing in

a convenient manner the relative positions of one body with

respect to another. For this we suppose the co-ordinate

system to be rigidly fixed to the one body. Then the co-

ordinates of the points of the other body fix the relative position
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simplest case, namely, that in which the system S' arises from
S as the result of a parallel displacement by the amount a

in the ^-direction (Fig. 38). Then clearly the new co-ordinate

x' of a point P will be equal to its old x diminished by the dis-

placement a, whereas the jy-co-ordinate remains unaltered.

Thus we have
%' = x — a, y' = y . . . (27)

Similar, but more complicated, transformation formulae

hold in the other case. We shall later have to discuss this

more fully. It is important to recognize that every quantity

that has a geometric mean-

ly' ing in itself must be in-

dependent of the choice of

the co-ordinate system and
must hence be expressed in

similar co-ordinate systems

in a similar way. Such
a quantity is said to be

invariant with respect to

y'\jj the co-ordinate-transfor-

mation concerned. Let

us consider, as an example,

the transformation (27)

>*' above, that expresses a

~x~ displacement along the
Fig. 38- #-axis. It is clear that

the difference of the ^-co-

ordinates of two points P and Q, namely, x 2
— x lf does not

change. As a matter of fact (Fig. 39),

x\ == (x. a) = x 2
— %

If the two co-ordinate systems S and S' are inclined to each

other, then the distance s of any point P from the origin is an
invariant (Fig. 40). It has the same expression in both systems,

for, by Pythagoras' theorem, we have

s 2 = x 2 + y
2 = x' 2 + / 2

. . . (28)

In the more general case, in which the co-ordinate system

is simultaneously displaced and turned, the distance P, Q of

two points becomes an invariant. The invariants are par-

ticularly important because they represent the geometrical

relations in themselves without reference to the accidental

choice of the co-ordinate system. They will play a considerable

part in the sequel.

If we now return after this geometrical digression to our
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starting-point, we have to answer the question as to what are

the transformation laws that allow us to pass from one inertial

system to another.

We defined the inertial system as a co-ordinate system

in which the law of inertia holds. Only the state of motion is

important in this connexion, namely, the absence of accelera-

tions with respect to the absolute space, whereas the nature and

position of the co-ordinate system is unessential. If we choose

it to be rectangular, as happens most often, its position still

remains free. We may take a displaced or a rotated system,

only it must have the same state of motion. In the fore-

going we have always spoken of system of reference wherever

we were concerned with the state of motion and not with the

+y

fy'

Q 6 *1 L

VA/

*2
*-J?

Fig. 39. Fig. 40.

nature and position of the co-ordinate system, and we shall

use the expression systematically from now onwards.

If an inertial system S' is moving rectilinearly with respect

to S with the velocity v, we may choose rectangular co-ordinates

in both systems of reference such that the direction of motion

becomes the x- and the #'-axis, respectively. Further, we may
assume that at the time t = the origin of both systems co-

incides. Then, in the time t the origin of the S'-system will

have been displaced by the amount a = vt in the ^-direction :

thus at this moment the two systems are exactly in the position

that was treated above purely geometrically. Hence the

equations (27) hold, in which a is now to be set equal to vt.

Consequently we get the transformation equations

x = x — vt y = y

in which we have added the unchanged

z' = z . . (29)

co-ordinate. This
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law is called a Galilei transformation in honour of the founder
of mechanics.

We may also enunciate the principle of relativity as follows :

The laws of mechanics are invariant with respect to Galilei

transformations.

This is due to the fact that accelerations are invariant, as

we have already seen above by considering the change of

velocity of a moving body with respect to two inertial systems.
We showed earlier that the theory of motions or kinematics

may be regarded as a geometry in four-dimensional xyzt-sp&ce,

the " world " of Minkowski. In this connexion it is not without
interest to consider what the inertial systems and the Galilei

transformations signify in this four-dimensional geometry.
This is by no means difficult, for the y- and the z-co-ordinate

do not enter into the trans-

formation at all. It is thus
sufficient to operate in the
^-plane.

We represent our iner-

tial system S by a rectangu-

lar ^-co-ordinate system
(Fig. 41). A second inertial

system S' then corresponds
to another co-ordinate sys-

tem x't', and the question

is : what does the second
look like and how is it

situated relatively to the

first ? First of all, the

time-measure of the second
Fig. 41.

system S' is exactly the same as that of the first, namely, the
one absolute time t — t' ; thus the #-axis, on which t = lies,

coincides with the #'-axis, t' = 0. Consequently the system S'

can only be an oblique co-ordinate system. The /'-axis is the
world-line of the point %' = 0, that is, of the origin of the
system S'. The ^-co-ordinate of this point which moves with
the velocity v relatively to the system S is equal to vt in this

system at the time t. For any world-point P whatsoever the
figure then at once gives the formula of the Galilei transforma-
tion x' = x — vt.

Corresponding to any other inertial system there is another
oblique ^-co-ordinate system with the same #-axis, but a
differently inclined /-axis. The rectangular system from which
we started has no favoured position among all these oblique
systems. The unit of time is cut off from all the /-axes of the
various co-ordinate systems by the same parallel to the #-axis.
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This is in a certain sense the " calibration curve " of the xt-

plane with respect to the time.

We compress the result into the sentence :

In the xt-plane the choice of the direction of the t-axis is quite

arbitrary ; in every xt-co-ordinate system having the same x-axis

the fundamental laws of mechanics hold.

From the geometric point of view this manifold of equivalent

co-ordinate systems is extremely singular and unusual. The

fixed position or the invariance of the %-axis is particularly

remarkable. When we operate in geometry with oblique

co-ordinates there is usually no reason for keeping the position

of one axis fixed. But this is required by Newton's fundamental

law of absolute time. All events which occur simultaneously,

that is for the same value of t, are represented by a parallel

to the #-axis. Since, according to Newton, time flows " abso-

lutely and without reference to any object whatsoever,"

simultaneous events must correspond to the same world-point

in all allowable co-ordinate systems.

We shall see that this unsymmetrical behaviour of the

world-co-ordinates x and t, here only mentioned as an error of

style, is actually non-existent. Einstein has eliminated it

through his relativization of the conception of time.

8. Inertial Forces

After having recognized that the individual points in

Newton's absolute space have at any rate no physical reality,

we enquire what remains of this conception at all. Well,

it asserts itself quite clearly and emphatically, for the resistance

of all bodies to accelerations must be interpreted in Newton's

sense as the action of absolute space. The locomotive that

sets the train in motion must overcome the inertial resistance.

The shell that demolishes a wall draws its destructive power

from inertia. Inertial actions arise wherever accelerations

occur, and these are nothing more than changes of velocity

in absolute space ; we may use the latter expression, for a

change of velocity has the same value in all inertial systems.

Systems of reference that are themselves accelerated with

respect to inertial systems are thus not equivalent to the latter,

or equivalent among themselves. We can, of course, also

refer the laws of mechanics to them, but they then assume a

new and more complicated form. Even the path of a body

left to itself is no longer uniform and rectilinear in an accelerated

system (see III, i, p. 48). This may also be expressed by

saying that in an accelerated system apparent forces, inertial

forces, act besides the true forces. A body on which no true
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forces act is yet subject to these inertial forces, and its motion
is therefore in general neither uniform nor rectilinear. For
example, a vehicle when being set into motion or stopped is

such an accelerated system. Railway journeys have made
everyone familiar with the jerk due to the train starting or

stopping, and this is nothing other than the inertial force of

which we have spoken.

We shall consider the phenomena individually for a system
S moving rectilinearly, whose acceleration is to be equal to k.

If we now measure the acceleration b of a body with respect to

this moving system S, then the acceleration with respect to

absolute space is obviously greater to the extent k. Hence
the fundamental dynamical law with respect to space is

m(b + k) = K.

If we write this in the form

mb = K — mk,

we may say that in the accelerated system S a law of motion
of Newtonian form, namely,

mb = K'

again holds, except that now we must write for the force K'
the sum

K' = K - mk

where K is the true, and — mk the apparent or inertial force.

Now, if there is no true force acting, that is, if K = o,

then the total force becomes equal to the force of inertia

K' = — mk.... (30)

Thus this force acts on a body left to itself. We may recog-

nize its action from the following considerations. We know that

the gravitation on the earth, the force of gravity, is determined

by the formula G = mg, where g is the constant acceleration

due to gravity. The force of inertia K' = — mk thus acts

exactly like weight or gravity ; the minus sign denotes that

the force of acceleration is in a direction opposite to the system
of reference S used as a basis. The value of the apparent
gravitational acceleration k is equal to the acceleration of the

system of reference S. Thus the motion of a body left to itself

in the system S is simply a motion such as that due to falling

or being thrown.

This relationship between the inertial forces in accelerated

systems and the force of gravity still appears quite fortuitous

here. It actually remained unobserved for two hundred years.
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But even at this stage we must state that it forms the basis

of Einstein's general theory of relativity.

9. Centrifugal Forces and Absolute Space

In Newton's view the occurrence of inertial forces in acceler-

ated systems proves the existence of absolute space or, rather,

the favoured position of inertial systems. Inertial forces

present themselves particularly clearly in rotating S3'stems

of reference in the form of centrifugal forces. It was from them
that Newton drew his main support for his doctrine of absolute

space. Let us give the substance of his own words :

" The effective causes which distinguish absolute and relative

motion from each other are centrifugal forces, the forces tending

to send bodies away from the axis of rotation. In the case

of a motion that is only relatively

circular these forces do not exist, []77 , __j^

but they are smaller or greater in

proportion to the amount of the

(absolute) motion."
" Let us, for example, hang a

vessel by a very long thread and
turn it about its axis until the

thread becomes very stiff through

the torsion (Fig. 42). Then let

us fill it with water and wait till

both vessel and contents are com-
pletely at rest. If it is now made
to rotate in the opposite direction

by a force applied suddenly, and
if this lasts for some time whilst

the thread unwinds itself, the

surface of the water will first be

plane, just as before the vessel began to move, and then when

the force gradually begins to act on the water, the vessel will

make the water participate appreciably in the motion. It

(the water) gradually moves away from the middle and mounts

up the walls of the vessel, assuming a hollow shape (I have

carried out this experiment personally)."
" At the beginning when the relative motion of the water

in the vessel ( with respect to the walls) was greatest, it displayed

no tendency to move away from the axis. The water did not

seek to approach the periphery by climbing up the walls,

but remained plane, and thus the true circular motion had not

yet begun. Later, however, as the relative motion of the water

decreased, its ascent up the walls expressed the tendency to
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move away from the axis, and this tendency showed the con-

tinually increasing true circular motion of the water, until

this finally reached a maximum, when the water itself was
resting relatively to the vessel."

" Moreover, it is very difficult to recognize the true motions
of individual bodies and to distinguish them from the apparent

motions, because the parts of that immovable space in which
the bodies are truly moving cannot be perceived bjf the senses."

" Yet the position is not quite hopeless. For the necessary

auxiliary means are given partly by the apparent motions,

which are the differences of the real ones, and partly by the

forces on which the true motions are founded as working
causes. If, for example, two spheres are connected at a given

distance apart by means of a thread and thus turned about
the usual centre of gravity (Fig. 43), we recognize in the tension

of the thread the tendency of the spheres to move away from
the axis of the motion, and from this we can get the magnitude
of the circular motion ... In this way we could find both
the magnitude and the direction of this circular motion in

every infinitely great space, even if there were nothing external

and perceptible in it, with which the spheres could be com-
pared."

These words express most clearly the meaning of absolute

space. We have only a few words of explanation to add to

them.
Concerning, firstly, the quantitative conditions in the case

of the centrifugal forces we can at once get a survey of these

if we call to mind the magnitude and the direction of the accelera-

tion in the case of circular motions. It was directed towards
the centre and, according to formula (4), p. 25, it had the

v 2

value b = — , where r denotes the circular radius, and v the
r

velocity.

Now, if we have a rotating system of reference S that ro-

tates once in T sees., then the velocity of a point at the distance

r from the axis (see formula (18), p. 52) is

277?'

hence the acceleration relative to the axis, which we denoted
by k (see p. 68) is

_ A^r
k =

Now, if a body has the acceleration b relatively to S, its

absolute acceleration is b + k. Just as above in the case of
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rectilinear accelerated motion there then results an apparent
force of the absolute value

a A 77
'"

1
'

(3i:

which is directed away from the axis. It is the centrifugal

force.

It is well known that the centrifugal force also plays a part

in proving that the earth rotates (Fig. 44). It drives the

masses away from the axis of rotation and through this causes,

firstly, the flattening of the earth at the poles, and, secondly,

the decrease of gravity from the pole towards the equator. We
became acquainted with the latter phenomenon above, when
we were dealing with the choice of the unit of force (II, 15, p. 45)

,

without going into its cause. According to Newton it is a

proof of the earth's rotation. The centrifugal force, acting

outwards, acts against gravity and reduces the weight. The

o o
Fig. 43.

decrease of the acceleration g due to gravity has the value

4*L? at the equator, where a is the earth's radius. If we here

insert for a the value given above (III, 3, (23), p. 55),

a = 6*37 . 10 cms., and for the time of rotation T = 1 day
= 24 . 60 . 60 sees. = 86,400 sees., we get for the difference

of the gravitational acceleration at the pole and at the equator

the value 3*37 cm./sec. 2
, which is relatively small compared

with 981 ; this value has to be increased slightly, owing to

the flattening of the earth.

According to Newton's doctrine of absolute space these

phenomena are positively to be regarded not as due to motion

relative to other masses, such as the fixed stars, but as due

to absolute rotation in empty space. If the earth were at

rest, and if, instead, the whole stellar system were to rotate

in the opposite sense once around the earth's axis in 24 hours,
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then, according to Newton, the centrifugal forces would not
occur. The earth would not be flattened and the gravitational
force would be just as great at the equator as at the pole.

The motion of the heavens, as viewed from the earth, would
be exactly the same in both cases. And yet there is to be
a definite difference between them ascertainable physically.

The position is brought out perhaps still more clearly in

Foucault's pendulum experiment (1850). According to the
laws of Newtonian dynamics a pendulum swinging in a plane
must permanently maintain its plane of vibration in absolute
space if all deflecting forces are excluded. If the pendulum
is suspended at the North Pole, the earth rotates, as it were,
below it (Fig. 45). Thus the observer on the earth sees a
rotation of the plane of oscillation in the reverse sense. If the
earth were at rest but the stellar system in rotation, then,

^x

Fig. 45. Fig. 46.

according to Newton, the position of the plane of oscillation
should not alter with respect to the earth. The fact that it

does so again appears to prove the absolute rotation of the
earth.

We shall consider a further example—the motion of the
moon about the earth (Fig. 46). According to Newton the
moon would fall on to the earth if it had not an absolute
rotation about the latter. Let us imagine a co-ordinate system,
with its origin at the centre of the earth, and the #y-plane as
that of the moon's orbit, the #-axis always passing through the
moon. If this system were to be absolutely at rest, then the
moon would be acted on only by the gravitational force to-
wards the centre of the earth, which, by formula (26) on p. 56,
has the value

K = *M?.
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Thus it would fall to the earth along the *-axis. The fact that
it does not do so apparently proves the absolute rotation of

the co-ordinate system xy. For this rotation produces a centri-

fugal force that keeps equilibrium with the force K, and we get

y r 2

This formula is, of course, nothing other than Kepler's
third law. For if we cancel the mass m of the moon on both

sides and express v by the period of revolution T, v = -=-, we get

or, by (25) on p. 56,

47rV = JM
T 2

: :

r 2

r3 &M _ r
f2 " £T* " U

An exactly corresponding result holds, of course, for the

rotation of the planets about the sun.

These and many other examples show that Newton's
doctrine of absolute space rests on very concrete facts. If we
run through the sequence of arguments again, we see the follow-

ing :

The example of the rotating glass of water shows that

the relative rotation of the water with respect to the glass is

not responsible for the occurrence of centrifugal forces. It

might be that greater masses in the neighbourhood, say the

whole earth, are the cause. The flattening of the earth, the

decrease of gravity at the equator, Foucault's pendulum
experiment show that the cause is to be sought outside the

earth. But the orbits of all moons and planets likewise exist

only through the centrifugal force that maintains equilibrium

with gravitation. Finally, we notice the same phenomena
in the case of the farthermost double stars, the light from which
takes thousands of years to reach us. Thus it seems as if

the occurrence of centrifugal forces is universal and cannot
be due to inter-actions. Hence nothing remains for us but to

assume absolute space as their cause.

Such modes of conclusion have been generally current and
regarded as valid since the time of Newton. Only few thinkers

have opposed them. We must name among these few above all

Ernst Mach. In his critical account of mechanics he has
analysed the Newtonian conceptions and tested their logical

bases. He starts out from the view that mechanical experience

can never teach us anything about absolute space. Relative
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positions and relative motions alone may be ascertained and

are hence alone physically real. Hence Newton's proofs of

the existence of absolute space must be illusory. As a matter

of fact, everything depends on whether it is admitted that

if the whole stellar system were to rotate about the earth no

flattening, no decrease of gravity at the equator, and so forth,

would occur. Mach asserts rightly that such statements go

far beyond possible experience. He reproaches Newton very

energetically with having become untrue to his principle of

allowing only facts to be considered valid. Mach himself has

sought to free mechanics from this grievous blemish. He was

of the opinion that the inertial forces would have to be regarded

as actions of the whole mass of the universe, and sketched the

outlines of an altered system of dynamics in which only relative

quantities occurred. Yet his attempt could not succeed.

In the first place the importance of the relation between

inertia and gravitation that expresses itself in the proportion-

ality of weight to mass escaped him. In the second place he

was unacquainted with the relativity theory of optical and

electro-magnetic phenomena which eliminated the prejudice

in favour of absolute time. A knowledge of both these facts

was necessary to build up the new mechanics, and the dis-

covery of both was the achievement of Einstein.



CHAPTER IV

THE FUNDAMENTAL LAWS OF OPTICS

i. The Ether

MECHANICS is both historically and logically the foun-

dation of physics, but it is nevertheless only a part of

it, and, indeed, a small part. Hitherto to solve the

problem of space and time we have made use only of mechanical

observations and theories. We must now enquire what the

other branches of physical research teach us about it.

It is, above all, the realms of optics, of electricity, and of

magnetism that are connected with the problem of space
;

this is due to the circumstance that light and the electric

and magnetic forces traverse empty space. Vessels out of

which the air has been pumped are completely transparent

for light no matter how high the vacuum. Electric and
magnetic forces, too, act across such a vacuum. The light

of the sun and the stars reaches us after its passage through

empty space. The relationships between the sun-spots and

the polar light on the earth and magnetic storms show inde-

pendently of all theory that electromagnetic actions take

place through astronomic space.

The fact that certain physical events propagate themselves

through astronomic space led long ago to the hypothesis that

space is not empty but is filled with an extremely fine imponder-

able substance, the ether, which is the carrier or medium of

these phenomena. So far as this conception of the ether is still

used nowadays it is taken to mean nothing more than empty
space associated with certain physical states or " fields."

If we were to adopt this abstract conception from the very out-

set, the majority of the problems that are historically connected

with the ether would remain unintelligible. The earlier ether

was indeed regarded as a real substance, not only endowed with

physical states, but also capable of executing motions.

We shall now describe the development, firstly, of the prin-

ciples of optics, and, secondly, of those of electrodynamics.

This will for the present make us digress a little from the problem

75
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of space and time, but will then help us to take it up again

fortified with new facts and laws.

2. The Corpuscular and the Undulatory Theory

* I say then that pictures of things and thin shapes are emitted

from things off their surfaces . . .

Therefore in like manner idols must be able to scour in a moment
of time through space unspeakable . . .

But because we can see with the eyes alone, the consequence is that,

to whatever point we turn our sight, there all the several things meet
and strike it with their shape and colour . . .

That is what we read in the poem of Titus Lucretius Carus

on the Nature of Things (Book 4), that poetic guide to Epicurean

philosophy, which was written in the last century before the

birth of Christ.

The lines quoted contain a sort of corpuscular theory of

light which is elaborated by the imaginative power of the poet

but at the same time developed in a true scientific spirit.

Yet we can no more call this doctrine a scientific doctrine than

we can other ancient speculations about light. There is no sign

of an attempt to determine the phenomena quantitatively, the

first characteristic of objective effort. Moreover it is particu-

larly difficult to dissociate the subjective sensation of light from

the physical phenomenon and to render it measurable.

The science of optics maybe dated from the time of Descartes.

His Dioptrics (1638) contains the fundamental laws of the

propagation of light, the laws of reflection and refraction.

The former was already known to the ancients, and the latter

had been found experimentally shortly before by Snell (about

1618). Descartes evolved the idea of the ether as the carrier

of light, and this was the precursor of the undulatory theory. It

was already hinted at by Robert Hooke (1667), and was clearly

formulated by Christian Huygens (1678). Their great con-

temporary, Newton, who was somewhat younger, is regarded

as the author of the opposing doctrine, the corpuscular theory.

Before entering on the struggle between these theories we shall

explain the nature of each in rough outline.

The corpuscular theory asserts that luminescent bodies

send out fine particles that move in accordance with the laws

of mechanics and that produce the sensation of light when
they strike the eye.

The undulatory theory sets up an analogy between the pro-

pagation of light and the motion of waves on the surface

of water or sound-waves in air. For this purpose it has to

assume the existence of a medium that permeates all trans-

* From Munro's prose translation, published by Deighton, Bell & Co.



FUNDAMENTAL LAWS OF OPTICS 77

parent bodies and that can execute vibrations ; this is the
luminiferous ether. In this process of vibration the individual
particles of this substance move only with a pendulum-like
motion about their positions of equilibrium. That which
moves on as the light-wave is the state of motion of the particles

and not the particles themselves. Fig. 47 illustrates the process
for a series of points that can vibrate up and down. Each of

the diagrams drawn vertically below one another corresponds to
a moment of time, say, t = o, 1, 2, 3 . . . Each individual
point executes a vibration vertically. The points all taken
together present the aspect of a wave that advances towards
the right from moment to moment.

Now there is a significant objection to the undulatory theory.
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It is known that waves run around obstacles. It is easy to see

this on every surface of water, and sound waves also "go
around corners." On the other hand, a ray of light travels

in a straight line. If we interpose a sharp-edged opaque body
in its path we get a shadow with a definite outline.

This fact moved Newton to discard the undulatory theory.

He did not himself decide in favour of a definite hypothesis
but merely established that light is something that moves away
from the luminescent body " like ejected particles." But his

successors interpreted his opinion as being in favour of the

emission theory, and the authority of his name gained the

acceptance of this theory for a whole century. Yet, at that

time Grimaldi had already discovered (the result was published

posthumously in 1665) that light can also " bend round corners."
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At the edges of sharp shadows a weak illumination in successive

striae are seen ; this phenomenon is called the diffraction of

light. It was this discovery in particular that made Huygens
a zealous pioneer of the undulatory theory. He regarded

as the first and most important argument in favour of it the

fact that two rays of light cross each other without interfering

with each other, just like two trains of water-waves, whereas
bundles of emitted particles would necessarily collide or at

least disturb each other. Huygens succeeded in explaining

the reflection and the refraction of light on the basis of the

undulatory theory. He made use of the principle, now called

after his name, according to which every point on which the

light impinges is to be regarded as the source of a new spherical

wave of light. This resulted in a fundamental difference

between the emission and the undulatory theory, a difference

that later led to the final experi-

mental decision in favour of the
latter.

It is known that a ray of light

which passes through the air and
strikes the plane bounding sur-

face of a denser body such as

glass or water is bent or refracted

so that it is more steeply inclined

to the bounding surface (Fig. 48)

.

The emission theory accounts
for this by assuming that the

corpuscles of light experience an
attraction from the denser medium
at the moment they enter into it.

Thus they are accelerated by an impulse perpendicular to the
bounding surface and hence deflected towards the normal. It

follows from this that they must move more rapidly in the
denser than in the less dense medium. Huygen's construction

on the wave theory depends on just the opposite assumption
(Fig. 49). When the light wave strikes the bounding surface it

excites elementary waves at every point. If these become
transmitted more slowly in the second, denser, medium, then
the plane that touches all these spherical waves and that
represents the refracted wave according to Huygens, is deflected

in the right sense.

Huygens also interpreted the double refraction of Iceland
spar, discovered by Erasmus Bartholinus in 1669, on the basis

of the wave-theory, by assuming that light can propagate
itself in the crystal with two different velocities in such a way
that the one elementary wave is a sphere, the other a spheroid.

Fig. 48.
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He discovered the remarkable phenomenon that the two rays

of light that emerge out of such a piece of fluor spar behave

quite differently from other light towards a second piece of

fluor spar. If the second crystal is turned about a ray that

comes out of the first, then two rays arise out of it which are

of varying intensity according to the position of the crystal,

and it is possible to make one or other of these rays vanish

Fig. 49.

entirely (Fig. 50). Newton remarked (1717) that it is to be

concluded from this that a ray of light corresponds in symmetry

not to a prism with a circular but rather to one with a square

cross-section. He interpreted this as evidence against the

undulatory theory, for at that time, analogously with sound-

waves, only waves of compression and rarefaction were thought

of, in which the particles swing " longitudinally " in the direction

Fig. 50.

of propagation of the wave (Fig. 51), and it is clear that these

must have rotatory symmetry about the direction of pro-

pagation.

3. The Velocity of Light

The first determinations of the most important property

of light, that which will form the nucleus of our following
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reflections, namely, the velocity of light, were made indepen-

dently of the controversy between the two hypotheses about

the nature of light. The fact that it was enormously great

was clear from all observations about the propagation of light.

Galilei had endeavoured (1607) to measure it with the aid of

lantern signals but without success, for light traverses earthly

distances in extremely short fractions of time. Hence the

measurement succeeded only when the enormous distances

between the heavenly bodies in astronomic space were used.

Olaf Romer observed (1676) that the regular eclipses of

Jupiter's satellites occur earlier or later according as the earth
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Fig. 51.

is nearer to or farther away from Jupiter (Fig. 52). He inter-

preted this phenomenon as being caused by the difference of

time used by the light to traverse the paths of different lengths,

and he calculated the velocity of light on this basis. We shall

in future call this velocity c. Its exact value, to which Romer

approximated very closely, is

c = 300,000 km./sec. = 3 . io 10 cms. per sec. . (32)

James Bradley discovered (1727) another effect of the
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finite velocity of light, namely, that all fixed stars appear to
execute a common annual motion that is evidently a count i r-

part to the rotation of the earth around the sun. It is very
easy to understand how this effect comes about from the point
of view of the emission theory. We shall give this inter-

pretation here, but we must remark that it is just this pheno-
menon that raises certain difficulties for the wave-theory,
about which we shall yet have much to say. We know
(see III, 7, p. 64) that a motion which is rectilinear and
uniform in our system of reference S is so also in another
system S', if the latter executes a motion of translation with
respect to S. But the magnitude and the direction of the
velocity is different in the two systems. It follows from this

that a stream of light corpuscles which, coming from a fixed

Fig. 52. Fig. 53.

star, strike the earth, appear to come from another direction.

We shall consider this deflection or aberration for the particular

case when the light impinges perpendicularly to the motion
of the earth (Fig. 53). Let a telescope, on the objective of

which a light corpuscle strikes, be in the position 1. Now,
whilst the light traverses the length / of the telescope, the
earth, and with it the telescope, moves into the position 2 by
an amount d. Thus the ray strikes the centre of the eye-piece
only when it comes, not from the direction of the telescopic

axis, but from a direction lying somewhat behind the earth's

motion. Hence the direction in which the telescope aims
does not point to the true position of the star, but to a point
of the heavens that is displaced forward. The angle of deflec-

tion is determined by the ratio d : /, and is evidently inde-

pendent of the length / of the telescope. For if the latter be
6
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increased, so also is the time that the light requires to traverse

it, and hence also the displacement d of the earth is increased

in the same ratio. The two paths I and d, traversed in equal

times by the light and the earth, must be in the ratio of the

corresponding velocities :

d _ v

This ratio, also called the aberration constant, will in future

be denoted by £ :

fl = v .... (33)
c

It has a very small numerical value, for the velocity of the

earth in its orbit about the sun amounts to about v = 3°

km. /sec, whereas the velocity of light, as already mentioned,

amounts to 300,000 km./sec Hence j3 is of the order 1 : 10,000.

The apparent positions of all the fixed stars are thus always

a little displaced in the direction of the earth's motion at that

Fig. 54.

moment, and hence describe a small elliptical figure during the

annual revolution of the earth around the sun. By measuring

this ellipse the ratio jS may be found, and since the velocity v

of the earth in its orbit is known from astronomic data, the

velocity of light c may be determined from it. The result is

in good agreement with Romer's measurement.

We shall next anticipate the historical course of events

and shall give a note on the earthly measurements of the velo-

city of light. All that was essential for this was a technical

device that allowed the extremely short times required by light

to traverse earthly distances of a few kilometres or even only

a few metres, to be measured with certainty. Fizeau (1849)

and Foucault (1865) used two different methods to carry

out these measurements, and confirmed the numerical value

of c found by the astronomic method. The details of the

process need not be discussed here, particularly as they are

to be found in every elementary textbook of physics. We
call attention to only one point : in both processes the ray of
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light is projected from the source Q on to a distant mirror S,

where it is reflected and returns to its starting-point (Fig. 54).

It traverses the same path twice, and hence it is only the mean
velocity during the motion there and back that is measured.
The following result, which is important for later considerations,

arises from this circumstance : if we suppose that the velocity

of light is not the same in both directions, because the earth
itself is in motion—we shall discuss this point later (IV, 9, p. no)
—then this influence will be wholly or partially cancelled in

the motion to and fro. Therefore, in view of the smallness
of the velocity of the earth in comparison with that of light,

we need take no account of the earth's motion in these measure-
ments in practice.

The measurements of the velocity of light were later

repeated with improved apparatus, and a considerable degree
of accuracy was obtained. Nowadays they can be carried out
in a room of moderate length. The result is the value (32)
given above. Foucault's method also allowed the velocity

of light to be measured in water. It was found to be smaller

than that obtained for air. This gave a definite decision on
one of the most important points under dispute between the

emission and the undulatory theory in favour of the latter.

This occurred, indeed, at a time when the triumph of the wave-
theory had already long been assured on other grounds.

4. Fundamental Conceptions of the Wave Theory
Interference

Newton's greatest achievement in optics was the resolution

of white light into its coloured constituents by means of a prism
and the exact examination of the spectrum, which led him to

the conviction that the individual spectral colours were the
indivisible constituents of light. He is the founder of the
theory of colour, the physical content of which is still fully

valid to-day—in spite of Goethe's attacks. The power of

Newton's discoveries paralysed the free thought of the succeed-
ing generations. His refusal to accept the undulatory theory
blocked the road to its acceptance for well nigh a century.
Nevertheless it found isolated supporters such as, for example,
the great mathematician Leonhard Euler in the 18th century.

The revival of the wave-theory is due to the works of

Thomas Young (1802), who adduced the principle of interfer-

ence to explain the coloured rings and fringes which even
Newton had observed in thin layers of transparent substances.

We shall at this stage deal somewhat in detail with the pheno-
menon of interference because it plays a decisive part in all
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finer optical measurements, particularly in researches that

constitute the foundations of the theory of relativity.

We explained the nature of waves above : it consists in

the individual particles of a body executing periodic oscillations

about their positions of equilibrium, whereby the momentary

position or the phase of the motion is different for neighbouring

particles and moves forward with constant velocity. The

time that a definite particle requires for one vibration, to and

fro, is called the time of vibration or the period, and is denoted by

T. The number of vibrations in one second or the frequency

is designated by v. Since the time of a vibration multiplied

by their number per second must give exactly one second, we

must have vT = i, thus

„ = * or T = T
. . . (34)

T v

Fig. 55.

Instead of vibration number or frequency we often say
" colour," because a light wave of a definite frequency pro-

duces a definite sensation of colour in the eye. We shall not
enter into the complicated question as to how " physical

colours," as we may call the great manifold of psychological

impressions of colour, come about through the conjoined action

of simple periodic vibrations. The waves that start out from

a small source of light have the form of spheres. This means

that particles on a sphere drawn around the source as centre

are always in the same state of vibration or they are of equal
" phase " (Fig. 55). By means of refraction or other influences

a part of such a spherical wave may be deformed so that the

surfaces of equal phase or the wave surfaces have some other
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form. The simplest wave-surface is evidently the plane,

and it is clear that a sufficiently small piece of any arbitrary

wave surface, hence even of a spherical surface, may always
be regarded in approximations as plane. Hence we consider

in particular the propagation of plane waves (Fig. 56). The
direction that is perpendicular to the planes of the waves,
that is, the normal to the waves, is at the same time the direction

of propagation. It is clearly sufficient to consider the state

of vibration along a straight line parallel to this direction.

Whether the vibration of the individual particle occurs

parallel or perpendicularly to the direction of propagation,
whether it is longitudinal or transverse, will be left quite open
at this stage. In the figures we shall always draw wave lines

and call the greatest displacements upwards and downwards
crests and hollows.

The distance from one crest to the next is called wave-
length and is designated by A. The distance between the suc-

cessive or any two consecutive planes in the same phase is

obviously exactly the same amount.

Fig. 56.

During a vibration of a definite particle to and fro, the

duration of which is T, the whole wave moves forward exactly

a wave-length A (Fig. 47, p. 77). Since the velocity in every
motion is equal to the ratio of the path traversed to the time
required to do so, the wave velocity c is equal to the ratio of

the wave-length to the time of vibration :

A

T
or Xv (35)

If a wave enters from one medium into another, say, from
air into glass, the time rhythm of the vibrations is, of course,

carried over the bounding surface, that is, T (or v) remains the

same. On the other hand, the velocity c and hence, on account
of formula (35), also the wave-length A changes. Thus all

methods of measuring A may serve to compare the velocity

of light in various substances or under various circumstances.

We shall make use of this fact later.
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We are now in a position to understand the nature of inter-

ference phenomena, the discovery of which helped the wave-
theory to prevail. Interference may be described by the

paradoxical words : light added to light does not necessarily

give intensified light, but may become extinguished.

The reason for this is that, according to the wave-theory,
light is no stream of material particles but a state of motion.
Two vibration impulses that occur together may, however,
destroy the motion just like two people who wish to do contrary
things impede each other and produce nothing. Let us

imagine two trains of waves that intersect. This phenomenon
can be conveniently observed if we look from a hillock down
into a lake in which the waves caused by two ships meet (Fig.

57). These two wave-systems interpenetrate without dis-

turbing each other. In the region at which both exist simul-

taneously a complicated motion arises, but so soon as the one

Fig. 57. Fig. 59.

wave has passed through the other, it continues further as if

nothing had happened to it. If we fix our attention on one

particular vibrating particle, we see that it experiences inde-

pendent impulses from both waves. Hence its displacement

at any point is simply the sum of the displacements that it

would have under the influence of the individual waves. Two
wave-motions are said to superpose without disturbing each

other. From this it follows that at points where crest and
crest and also at points where hollow and hollow meet, where

two equal waves encounter each other, the elevations and the

depressions are twice as great (Fig. 58). But at points where

crest and hollow meet the impulses destroy each other and no
displacement occurs at all (Fig. 59).

If we wish to observe interference of light it will not do simply

to take two sources of light and to allow the trains of waves
emerging from them to interpenetrate. No observable inter-
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ference phenomenon occurs through this, because the actual

light waves are no absolutely regular waves. Rather, the

state of vibration suddenly alters in a striking way after a

series of regular vibrations have occurred, corresponding to the

accidental phenomena that occur during the emission of light

in the source. These irregular changes effect a corresponding

fluctuation of the interference phenomena, which occurs much

too quickly for the eye to follow it, and hence we see only uni-

form light.

To obtain observable interferences we must resolve a ray

of light by artificial means, by reflection or refraction, into two

rays, and afterwards make them come together again. Then

the irregularities of the vibrations in both rays occur in exactly

the same time rhythm, and hence it follows that the inter-

ference phenomena do not fluctuate in space, but remain fixed.

Wherever the waves strengthen or extinguish each other at

a certain moment, they do so at every moment. If we direct

the eye, armed with a magnifying glass or a telescope, at such a

point we see fringes or rings, provided we use light of one colour

(monochromatic light), such as is approximately emitted by

a Bunsen flame coloured yellow by common salt. In ordinary

light which is composed of many colours the interference spots

corresponding to the various wave-lengths do not exactly

coincide. At one point red is intensified, say, and blue is

extinguished, at other points other colours occur, and hence

spots and fringes arise with wonderful colourings. It would,

however, take us away from our path of enquiry to pursue

these interesting phenomena further.

The simplest arrangements for producing interferences were

given by Fresnel (1822), an investigator whose works have

furnished the foundation for the theory of light which has

remained unattacked up to the present day. We shall often

meet with his name in the sequel. That time, the first de-

cades of the nineteenth century, must in many respects have

resembled our own. Just as nowadays through the discovery

of radioactivity and the associated phenomena of radiation,

through the enunciation of the physical principle of relativity

and of the doctrine of quanta, our knowledge of physical

nature is undergoing a stupendous process of deepening and

enlargement, which seems to the beholders a complete revolution

of all conceptions, so, a hundred years ago, the thousands

of individual observations, theoretical experiments, physical

or metaphycisal speculations coalesced for the first time into

complete and uniform ideas and theories, the application of

which at once suggested an undreamed-of abundance of new

observations and experiments. At that time Lagrange's
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" Analytical Mechanics " and Laplace's " Celestial Mechanics "

appeared, the two works that brought Newton's ideas to their

conclusion. From them there was developed on the one hand,
by Navier, Poisson, Cauchy, and Green, the mechanics of

deformable bodies and the theory of fluids and elastic sub-

stances ; on the other hand, by the works of Young, Fresnel,

Arago, Malus, and Brewster, the theory of light. At the same
time began the era of electromagnetic discoveries, of which
we shall speak later. At that time physical, research was
almost entirely in the hands of the French, Italians, and English.

Nowadays all educated nations participate, and the authors
of the great revolutionary theories of relativity and quanta,
Einstein and Planck, are German.

Fresnel allowed a ray of light to be reflected at two mirrors,

Fig. 60. Fig. 6i.

Sj and S 2 (Fig. 60), slightly inclined to each other. At the

points where they meet, these two reflected rays give inter-

ference fringes that can be seen with a magnifying glass.

Similar arrangements of apparatus have been given in great

numbers. We shall here enter only into a field which is im-

portant for our purpose, namely, that of the experimental

methods of measuring minute changes in the velocity of light.

The apparatus used is called an interferometer. It depends

on the fact that the wave-length alters proportionately with

the velocity of the light, and hence the interferences are dis-

placed. An example of an apparatus of this kind is the inter-

ferometer of Michelson. It consists in the main (Fig. 61)

of a glass plate P that is slightly silvered so as to allow one half

of the light from the source Q to pass through while the other

half is reflected.
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These two component rays travel on to two mirrors Sj and
S 2 , where they are reflected and again encounter the semi-

transparent glass plate P, which again resolves them, sending

one half of each ray into the observing telescope F. If the

two paths PSj and PS 2 are exactly equal the two component
rays arrive at the telescope in the same phase of vibration and
recombine to form the original light again. But if the path of

the first ray be lengthened by displacing the mirror S
2 , then

the crests and hollows of the two trains of waves no longer

coincide when the rays are recombined at F, but are displaced

with respect to each other and weaken each other more or less.

If the mirror Si is moved slowly we see alternate patches of

light and darkness in the telescope F. The distance of the

positions of S x for two successive dark fields is exactly equal to

the wave-length of the light. In this way Michelson has made
measurements of wave-length that exceed almost all other

physical measurements in accuracy. This is done by counting

the changes of light and darkness during a considerable shift

of the mirror S lf which comprises many thousands of wave-

lengths. The error of observation of an individual wave-
length then becomes just as many thousand times smaller.

We have here to give several numerical data. By the

above method it is found that the wave-length of the yellow

light that is sent out by a Bunsen flame coloured with common
salt (NaCl), and the source of which is sodium atoms, is about

%

mm. = 6'io ~ 5 cms. in vacuo. All visible light lies within
10,000

the small region of wave-lengths stretching from about 4.10
~ 5

(violet) to 8.10
~ 5 cms. (red). Thus in the language of acoustics

this comprises one octave ; that is, it is the region between

one wave and another that is twice as long. From formula (35)

there then follows for the vibration number of yellow sodium
c 'Vio*^

light the stupendous number i>= - = _- = 5'io 14 or 500r
A 610- 5

billion vibrations per second. The most rapid acoustic vibra-

tions that are still audible vibrate only about 50,000 times per

second.

The astonishing accuracy of optical methods of measurement
rests on the multiplication of the individual wave-lengths used

in interferometric measurements. For example, it allows us

to ascertain that the velocity of light in a gas likewise alters if

there is a very small change of pressure or temperature (due,

say, to the apparatus being touched by the hand). To show
this the gas is passed into a cylinder between the glass plate

P and the mirror Sr It is then seen that for even the slightest

increase of pressure the interference changes, light fields being

converted into darkness and vice versa.
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For the rest, we must remark that in the interferometer

we do not simply see a light on a dark field in the telescope,

but a system of light and dark rings. This is due to the fact

that the two rays are not exactly parallel and the waves are not

exactly plane. The separate parts of the two rays have thus

to traverse paths of different length. We shall not, however,

enter into the geometric details, but mention this circumstance

only because it is customary to speak of interference bands or

fringes.

We shall meet with Michelson's interferometer again when
we have to decide the question as to whether the earth's motion

influences the velocity of light.

5. Polarisation and Transversality of Light Waves

Although interference phenomena allow scarcely any inter-

pretation other than that of the wave-theory, its general

recognition was impeded by two difficulties which, as we saw

above, were regarded by Newton as being decisive contradictions

to it : firstly, the general rectilinear propagation of light (that

is, except for trifling diffraction phenomena) ; secondly, the ex-

planation of polarization phenomena. The first difficulty became

removed when the wave theory itself was worked out more

exactly ; for it was found that waves do, indeed, " bend round

corners," but only in regions that are of the order of magnitude

of the wave-length. As this is very small in the case of light,

our ordinary unrefined vision receives the impression of sharp

shadows and rectilinearly bounded rays. Only minute observa-

tion is able to detect the interference fringes of diffracted light

along the edges of the shadow. The merit of elaborating

the theory of diffraction is due to Fresnel, later Kirchhoff, (1882),

and, more recently, Sommerfeld (1895). They have deduced

the finer phenomena mathematically and have defined the

limits within which the conception ray of light may be applied.

The second difficulty concerned the phenomena due to the

polarization of light.

When we earlier spoke of waves we always had in mind

longitudinal waves such as are known in the case of sound.

For a sound wave consists of rhythmical condensations and

rarefactions, during which the individual particles of air move
to and fro in the direction of propagation of the wave. Trans-

versal waves were, indeed, also known ; for example, the waves

on a surface of water, or the vibrations of a stretched string,

in which the particles vibrate perpendicularly to the direction

of propagation of the wave. But in this case we are dealing

not with waves that advance in the interior of a substance
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but in part with phenomena on the upper surface (water waves)

and in part with motions of whole configurations (vibration

of strings). Observations or theories about the propagation

of waves in elastic solid bodies were not yet known. This

accounts for the circumstance, which appears strange to us,

that it was so long before optical waves were recognized as

transverse vibrations. In fact, the remarkable instance

occurred that the impulse for the development of the mechanics

of coarse-grained solid elastic bodies was given by experiments

and conceptions derived from the dynamics of the imponderable

and intangible ether.

We explained above (p. 79) what constitutes the nature

of polarization. The two rays that emerge out of a doubly

refracting crystal of calcite do not behave like ordinary light

when they pass through a second such crystal, that is, they

Fig. 62. Fig. 63.

do not again resolve into the equally intense rays, but into two
of unequal intensity, one of which may under certain circum-

stances vanish entirely.

In ordinary " white " light the various directions within

the plane of a wave are of equal value or equivalent (Fig. 62).

In polarized light this is obviously no longer the case. Malus

discovered (1808) that polarization is not a peculiarity of the

light that has passed through a doubly refracting crystal,

but may also be produced by simple reflection. He showed
that light which has been reflected from a mirror at a definite

angle is reflected by a second mirror to a varying degree, if

the latter mirror is turned about the incident ray (Fig. 63).

The plane perpendicular to the surface of the mirror and con-

taining the incident and the reflected ray is called the incident

plane. The reflected ray is then said to be polarized in the

incident plane ; this implies no more than that it behaves
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differently towards a second mirror according to the position

of the second incident plane to the first. If these mirrors are

perpendicular to each other no reflection at all occurs at the

second mirror.

The two rays that emerge out of a crystal of calcite are

polarized perpendicularly to each other. If we allow them
both to fall on to a mirror at an appropriate angle the one is

completely extinguished just when the other is reflected to its

full amount.
Fresnel and Arago made the decisive experiment (1816)

when they attempted to make two such rays, polarized per-

pendicularly to each other, interfere. They did not succeed.

Fresnel and also Young then drew the inference (1817) that

light vibrations must be transversal.

As a matter of fact this deduction makes the peculiar

behaviour of polarized light intelligible at once. The vibra-

tions of the ether particles do not occur in the direction of

Fig. 64. Fig. 65.

propagation but perpendicularly to it, that is, in the plane of

the wave (Fig. 62). But every motion of a point in a plane
may be regarded as composed of two motions in two directions

perpendicular to each other. In dealing with the kinematics
of a point we saw that its motion is determined uniquely when
its rectangular co-ordinates, which vary with the time, are

given. Now a doubly refracting crystal clearly has the property
of transmitting the vibrations of light in it at different velocities

in two mutually perpendicular directions. Hence, by Huyghens'
principle, when these vibrations enter the crystal they will be
deflected to different extents, or refracted differently, that is,

they will be separated in space. Each of the emergent rays

then consists only of vibrations that take place in a certain

plane that passes through the direction of the ray, and the

planes belonging to these two rays are mutually perpendicular
(Fig. 64). Two such vibrations clearly cannot influence each
other : they cannot interfere. Now, if a polarized ray enters

into a second crystal it is transmitted without being weakened
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only if its direction of vibration is in just the right position

with respect to the crystal, being just that in which this vibra-

tion can propagate itself. In all other positions the ray is

weakened : in the perpendicular position it is not transmitted
at all.

Similar conditions obtain in reflection. If this occurs at

the appropriate angle, then only one of the two vibrations,

the one parallel and perpendicular to the incident plane, is

reflected ; the other penetrates into the mirror and is absorbed
(Fig. 65). Whether the reflected vibration is that which takes

place in the incident plane or perpendicularly to it cannot, of

course, be ascertained. (In Fig. 65 the latter is assumed to be
the case.) But this question of the position of vibration with
respect to the plane or incidence or the direction of polarization

has given rise to elaborate researches, theories and discussions,

as we shall presently see.

6. The Ether as an Elastic Solid

After the transversality of light waves had been proved
in this way and by numerous experiments, there arose in

Fresnel's mind the vision of a future dynamical theory of light,

which was to derive optical phenomena from the properties

of the ether and the forces acting in it, in conformity with the
method of mechanics. The ether was necessarily a kind of

elastic solid, for it is only in such a substance that mechanical
transverse waves can occur. But in Fresnel's time the mathe-
matical theory of elasticity of solid bodies had not yet been
developed. Possibly he also thought from the outset that the

analogy of the ether with material substances was not to be
carried too far. At any rate he preferred to investigate the

laws of the propagation of light empirically and to interpret

them by means of the idea of transversal waves. Above all

it was to be expected that the optical phenomena in crystals

would shed light on the behaviour of the ether. Fresnel's

work in this field is to be ranked among the most beautiful

achievements of systematic physics, both in experimental
as well as in theoretical respects. Yet we must not digress

too far in pursuing details, but must keep in view our problem

:

how is the ether constituted ?

Fresnel's results appeared to confirm the analogy of light

waves with elastic waves. This gave a powerful stimulus
to the working out of the theory of elasticity, which had already
been begun by Navier (1821) and Cauchy (1822), and to which
Poisson (1828) devoted his attention. Cauchy then at once
applied the laws derived from elastic waves to optics (1829).

We shall try to give an idea of the content of this ether theory,
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The difficulty involved is that the proper and adequate

means of describing changes in continuous deformable bodies

is the method of differential equations. Since we do not wish

to take these as known, all that can be done is to illustrate

them by a simple example, and then to add at the end that in

the general case the same holds, but in a more complicated

way. The non-mathematical reader may perhaps then get

a rough idea of what is involved. It will not, however, give

him a real estimate of the power of achievement expressed

in the physical pictures and in the mathematical methods used.

We are fully conscious of the impossibility of entirely satisfying

the non-mathematician, but we cannot refrain from attempting

to illustrate the mechanics of continua, because all subsequent

theories, not only of the elastic ether, but also electrodynamics

in all its ramifications, and, above all, Einstein's theory of gravi-

tation, are built up on these conceptions.

A very thin stretched string is in a certain sense a one-

dimensional elastic configuration. We shall use it to develop

the theory of elasticity. To link up with ordinary mechanics,

which deals only with individual rigid solids, we suppose the

string to be not continuous but of an atomistic structure, as

it were. Let it consist of a series of equal small bodies that

are arranged in a line at equal distances from each other (Fig.

66). The particles are to possess inertial mass and each is

to exert forces on its two neighbours : these forces are to be

such that they resist both an increase and a decrease of the

distance between these particles. If we wish to have a concrete

picture of such forces, we need only think of small spiral springs

that are fixed between the particles. These resist compression

as well as extension. But such a representation must not be

taken literally. Forces of this kind, indeed, constitute just

the essential phenomena of elasticity.

Now if the first particle is displaced a little in the longi-

tudinal or in the transverse direction, it immediately acts

on the second particle ; the latter in its turn passes the action

on to the next, and so forth. The disturbance of the equili-

brium of the first particle thus passes along the whole series

like a short wave and finally also reaches the last particle.

This process does not, however, occur infinitely quickly. At
every particle a small fraction of time is lost because the

particle, owing to its inertia, does not instantaneously respond

to the impulse. For the force does not produce an instantane-

ous displacement but an acceleration, that is, a change of

velocity during a small interval of time, and the change of

velocity again requires time to produce its displacement.

Only when this displacement has reached its full value does
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the force act to its full extent on the next particle, and from then
onwards the process repeats itself with a loss of time that is

dependent on the mass of the particles. If the force that
arises through the displacement of the first particle were to

influence the last particle of the series directly, the action would
occur instantaneously, According to Newton's theory of

gravitation this is actually supposed to be the case in the mutual
attraction of the heavenly bodies. The force with whi h
one acts on the other is always directed at the point momentarily
occupied by the other and is determined by the distance
separating these points at that moment. Newtonian gravi-

tation is said to be an action at a distance, for it acts between
points at a distance although there is no intervening medium
to convey this action.

In contrast with this our series of equidistant points is the
simplest model of contiguous action or action by contact. For
the action exerted by the first point on the last is transferred
by the intervening masses, and hence does not occur instan-

taneously but with a loss of time. The force exerted by a

-e
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particle on its neighbours is certainly still imagined as an action

at a distance, although only at a small distance. We may,
however, suppose these distances between the particles to grow
smaller and smaller, their number becoming correspondingly
greater and greater, but in such a way that their total mass
remains the same. The chain or particles then passes over
into the limiting conception of a material continuum. The
forces act between infinitely near particles, and the laws of

motion assume the form of differential equations. They ex-

press mathematically the physical conception of contiguous
action.

We shall pursue this limiting process of the laws of motion
a little further for the case of our chain of mass-particles.

Let us consider purely transverse displacements (Fig. 67).

In the theory of elasticity it is assumed that a particle P is

pulled back by its neighbour Q more strongly in proportion
to the amount that Q is displaced transversely beyond P.

If u is the excess of the transverse displacement of P beyond
that of Q, and if a is the original distance between the particles
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along the straight line, then the restoring force is to be pro-

portional to the ratio - = d, which is called the deformation.
u

a

We set

K = p .

u = pd

where p is a constant number which is clearly equal to the force

if the deformation d be chosen equal to i. ^> is called the

elastic constant.

Now the same particle likewise experiences a force K' =

P— == pd' from its other neighbour R. But except in the
a

singular case, when the deflection of P is exactly a maximum,

the particle R will be more strongly displaced than P, and

hence will not pull back the latter, but will tend to increase

its displacement. Thus K' will work against K.

The resultant force on the particle P is the difference of

these forces

K-K' = p(d-d').

And this determines the motion of P according to the funda-

mental dynamical formula : mass times acceleration equals

force

= mb = K- K' =p{d-d f

).

Now let us suppose the number of particles to be increased

more and more, but their mass to be decreased in the same

ratio so that the mass per unit of length always retains the

same value. Let there be n particles in each unit of length,

so that n . a = I, that is, n = -. The mass per unit of length
a

is mn = — . This linear quantity is called the density of mass,
a

and is designated by p. By dividing the above equation by a,

we get

w, , K - K' J~d'— b = pb= = p
a a a

and here we have configurations quite similar to those which

occurred in the definitions of the conceptions, velocity and
acceleration. For just as the velocity was the ratio of the path

x to the time t, v = -, wherein the time t is to be considered
t

quite short for an accelerated motion, so we have here the
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deformation d = -, the ratio of the relative displacement
a

to the original distance, wherein the latter is to be regarded as

extremely small. Just as the acceleration was before defined

IS)

as the ratio of the change of velocity to the time, b = - =
t

——— , so we have here the quantity / = , which mea-

sures in a fully analogous manner the change of the deforma-

tion from point to point.

Exactly as the velocity v and the acceleration b retain their

sense and their finite values for time intervals that are arbi-

trarily small, so the quantities d and / retain their meaning
and finite values no matter how small the distance a becomes.

All these are so-called differential co-efficients, v = - and d = -

being such of the first order, b = ——— and / = such

of the second order.

Thus the equation of motion becomes a differential equation

of the second order,

pb = Pf . • (36)

both with respect to the time change as well as to the space

change of the event . A 11 laws of contiguous action in theoretical

physics are of this type. If, for example, we are dealing with
elastic bodies that are extended in all directions, we get two
analogously formed members for the other two space dimensions.

Moreover, precisely similar laws hold in the theory of electric

and magnetic events. Finally, the gravitational theory of

Einstein has also been brought into such a form.

We have here yet to remark that laws of action at a distance

may be written in a form similar to that of formulas for con-

tiguous action. For instance, if we strike out the member pb

in our equation (36), that is, if we assume that the density of

mass is extremely small, then a displacement of the first particle

will at the same moment call up a force acting on the last

particle, because the inertia of the intervening members has
dropped out. Thus we really have the transmission of a force

with infinite velocity, a true action at a distance. Nevertheless
the law pf = appears in the form of a differential equation,

as a contiguous action. Such laws of pseudo-contiguous action

will be met with in the theory of electricity and magnetism,
where they have really prepared the way for the true laws of

contiguous action. The essential factor in the latter is the

7
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inertial member that is responsible for the finite velocity of

transmission of disturbances of equilibrium, that is, the genera-

tion of waves.

Two quantities occur in the law (36) that determine the

physical character of the substance : the mass per unit of volume

or the density p, and the elastic constant p. If we write b = ±~f,
P

we see that for a given deformation, that is for a given /, the ac-

celeration becomes greater in proportion as p becomes greater

and p becomes smaller. Thus p is just a measure of the elastic

rigidity of the substance, and p is a measure of the inertial

mass, and it is clear that an increase of the rigidity accelerates

the motion, an increase of the inertia retards it. Accordingly

the velocity c of a wave will depend only on the ratio ?. For the
P

more quickly the wave travels the greater are the accelerations

of the individual particles of the substance. The exact law
for this relationship is found by the following considerations.

Each individual point-mass executes a simple periodic

motion of the kind which we investigated earlier (II, 11, p. 34).

We showed there that in it the acceleration is connected with

the deflection x according to formula (n)

b = (2ttv) 2x

where v is the number of vibrations per second. If we insert

in place of v the time of vibration according to formula (34),

p. 84, T = -, we get
v

-(¥)

The same argument that has here been used for succession

in time may also be applied for succession in space, and must
lead to relations that correspond entirely. We have simply
to replace the quantity / (the second space-coefficient) and
the time of vibration T (the period in time succession) by the

wave-length A (the " space-period "). We thus get the formula

/=(?)'*

If we form the quotient of the two expressions for b and /
the factor (277)

2x cancels out, and there remains

f T 2
'
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Now, on the one hand we have by formula (35), p. 85,

that - = c, on the other hand bv (36), p. 97, that - = £..

1 / P
Hence it follows that

1 Pc = £ or c -4. • (37)

This relation holds for all bodies, no matter whether they
be gaseous, liquid, or solid. But there is the following differ-

ence.

In liquids and gases there is no elastic resistance to the
lateral displacement of the particles, but only to the change
of volume. Hence only longitudinal waves can propagate
themselves in such substances, their velocities being determined
according to formula (37), by the elastic constant p which is

decisive in such changes of volume.
On the other hand, in solid bodies, on account of the elastic

rigidity which opposes
lateral displacements, three

waves, one longitudinal and
two transverse, with differ-

ent velocities, can transmit

themselves in each direc-

tion. This is due to the

fact that the compressions
and rarefactions of the

longitudinal waves involve

an elastic constant p,
which is different from
that which comes into

action for the lateral dis-

tortions due to the transverse vibrations.

Moreover, in non-crystalline bodies the two transverse waves
have, indeed, different directions of vibration, perpendicular
to each other, but they have the same velocity C t ; the longi-

tudinal wave has a different velocity C, (Fig. 68).

All these facts allow themselves to be confirmed by experi-
ments on acoustic waves in solid bodies.

We now return to the starting-point of our reflections,

namely, to the elastic theory of light.

This consists in identifying the ether as the carrier of light

vibrations with a solid elastic body. The light waves are then,
as it were, to be sound waves in this hypothetical medium.

Now, what properties are to be ascribed to this elastic

ether ? In the first place the enormous velocity of propagation c

Fig. 68.
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requires either that the elastic ridigity p be very great or that the

density of mass p be very small, or that both conditions hold

simultaneously. But since the velocity of light is different

in different substances, either the ether within a material body

must be condensed or its elasticity must be changed or again

both may be true simultaneously. We see that different

courses are here open to us. The number of possibilities is

still further increased by the fact that, as we saw above (IV,

5, P- 93) > experiment cannot decide whether the vibrations

of polarized light are parallel or perpendicular to the plane of

polarization (the incident plane of the polarizing mirror).

Corresponding to the indefinite nature of the problem we
also find an innumerable number of different theories of the

elastic ether in history. We have already mentioned the most

important authors ; to the mathematicians Poisson, Fresnel,

Cauchy, and Green there is to be added for the first time a

German physicist of note, Franz Neumann, who became the

teacher of the generation of physicists of his own country

characterized by Helmholtz, Kirchhoff and Clausius.

Nowadays we feel surprise at the amount of ingenuity

and labour that was expended on the problem of comprehending

optical phenomena in their totality as motions of an elastic

ether having the same properties as those possessed by material

elastic solids. It seems to us that the principle which defines

explanations as the reduction of unknown things to known

things was overstrained. For we now know that the nature

of elastic solids is by no means simple and is certainly not to

be regarded as known. The physics of the ether has shown

itself to be simpler and more easily intelligible than the physics

of matter, and modern research is directed at tracing back

the constitution of matter, as a secondary phenomenon, to

the properties of the fields of force that represent the remains

of the ether of the older theory. This change in the programme

of science is not least due to the failures attending the attempts

to build up a logical theory of the elastic ether.

One objection to the latter theory, which seems of impor-

tance, is that an all-pervading ether (which fills astronomic

space) of great rigidity, which it must have as the carrier of

the rapid vibrations of light, would necessarily offer resistance

to the motion of heavenly bodies, in particular, to that of the

planets. Astronomy has never detected departures from

Newton's laws of motion that would point to such a resistance.

Stokes (1845) partly disposed of this objection by remarking

that the conception of solidity of a body is in itself really some-

thing relative and depends on the relation of the deforming

forces to time. A piece of pitch—sealing-wax and glass behave
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similarly—when struck with a hammer splits cleanly. But

if it is loaded with a weight, the latter sinks gradually, although

perhaps only slowly, into the pitch as if pitch were a very

viscous fluid. Now, the forces that occur in light vibrations

change stupendously quickly (600 billion times per sec.) com-

pared with the relatively slow processes that occur in planetary

motions in the course of time ; the ratio of these forces is much
more extreme than that ot the hammer blow to the superimposed

weight. Therefore the ether may function for light as an

elastic solid and yet give way completely to the motion of the

planets.

Now, even if we wish to content ourselves with this astro-

nomic space filled with pitch, serious difficulties arise out of

the laws of the propagation of light themselves. Above all, we
have to take into account that in elastic solids a longitudinal

wave always occurs conjointly with the two transversal waves.

If we follow out the refraction of a wave at the boundary of

two media, and if we assume that the wave vibrates purely

transversally in the first medium, then a longitudinal wave
must arise in the second medium together with the transverse

wave. All attempts to escape this consequence of the theory

by making more or less arbitrary changes have been doomed to

failure. Extraordinary hypotheses were suggested, such as

that the ether opposes to compression an infinitely small or

an infinitely great resistance compared with its rigidity towards

transversal distortions. In the former case the longitudinal

waves would travel forward infinitely slowly, in the latter

infinitely quickly, and would at any rate not manifest them-

selves as light. A physicist, MacCullagh (1839), went so far

as to construct an ether that departed altogether from the

model of elastic bodies. For whereas in these the particles

oppose a resistance to every change of their distance from each

other, but follow pure twists without resistance, MacCullagh's

ether was to behave in just the contrary way. We cannot here

enter into the theory. However strange it may appear, it is

nevertheless of importance as the fore-runner of the electro-

magnetic theory of light. It leads to almost the same formulae

as the latter, and is actually able to give an account of optical

phenomena that is to a considerable degree correct. But
its weakness is that it disclosed no relationship between
optical phenomena and other physical phenomena. It is clear

that by means of arbitrary constructions ether models can be

found that allow a certain region of phenomena to be repre-

sented. Such inventions acquire a value as contributions

to our knowledge only when they lead to a fusion of two
formerly unconnected physical regions. This is the great
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advance achieved by Maxwell when he fitted optics into the

scheme of electromagnetic phenomena.

7. The Optics of Moving Bodies

Before we pursue this development further we wish to

pause and to ask how the doctrine of the elastic ether behaves

towards the space-time problem and relativity. Whereas in

our optical investigations so far we have taken no account

of the position or motion of the bodies that emit, receive, or

allow the passage of light, we shall now concentrate our at-

tention on just these conditions.

The space of mechanics is regarded as empty wherever

there are no material bodies present. The space of optics

is rilled with ether. But here the ether is for us actually a

kind of matter that has a certain mass, density, and elasticity.

Accordingly we can immediately apply Newtonian mechanics

with its doctrine of space and time to the universe full of ether.

This universe then no longer consists of isolated masses that

are separated by empty spaces but is completely filled with

the thin mass of the ether, in which the coarse masses of matter

are floating. The ether and matter act on each other with

mechanical forces and move according to the Newtonian laws.

Thus Newton's standpoint is logically applicable to optics.

The question is only whether observation is in agreement

with it.

But this question cannot be answered simply by unam-
biguous experiments. For the state of motion of the ether

outside and inside matter is not known, and we are free to think

out hypotheses about it. Thus we must put the question

in the form : is it possible to make assumptions about the

mutual actions of the motions of the ether and of matter such

that all optical phenomena are thereby explained ?

We now call to mind the doctrine of the principle of rela-

tivity of classical mechanics. According to it absolute space

exists only in a restricted sense ; for all inertial systems that

move rectilinearly and uniformly with respect to each other

may be regarded with equal right as being at rest in space.

The first hypothesis that suggests itself to us concerning the

luminiferous ether is the following

The ether in astronomic space far removed from material

bodies is at rest in an inertial system.

For if this were not the case parts of the ether would be

accelerated. Centrifugal forces would arise in it and would

bring about changes of density and elasticity, and we should

expect that the light from stars would have given us indications

of this.
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In form this hypothesis satisfies the classical principle

of relativity. If the ether is counted among material bodies,

then motions of translations of bodies with respect to the ether

are just as much relative motions as those of two bodies with

respect to each other, and a common motion of translation of

the ether and all matter should be capable of detection either

mechanically or optically.

But the physics of material bodies alone, without the ether,

need no longer satisfy the principle of relativity. A common
translation of all matter in which the ether does not participate,

that is, a relative motion with respect to the latter, could very

well be ascertained by optical experiments. Then the ether

would practically define a system of reference that is absolutely

at rest. The question which is important above all else for the

sequel is whether the observable optical phenomena depend

only on the relative

motions of material bodies

or whether the motion in

the sea of ether makes itself

remarked.
A light wave has three

characteristics :

1. The vibration

number or fre-

quency.

2. The velocity.

3. The direction of

propagation.

We shall now investi-

gate systematically what influence relative motions of the

bodies emitting and receiving light with respect to each other

and to the transmitting medium, be it the ether in free

astronomic space or be it a transparent substance, have on

these three characteristics.

We shall apply the following method. We consider a train

of waves, which leaves the zero-point o in any direction at the

time t = 0, and we count the individual waves that pass over

any point P up to the time t. This number is evidently quite

independent of the co-ordinate system in which the co-ordinates

P are measured, whether this system be at rest or moving.

We determine this number thus :

The first wave that leaves the zero-point t = has to advance

along a certain distance s (Fig. 69) until it reaches the point P,

and it takes the time
S
to do this. From this moment onwards
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we count the waves that pass over P up to the moment t, that

is, during the time t — -. Now since the light executes v

vibrations in one second, and every wave that passes by cor-

responds exactly to one vibration, v waves pass by in one

second, and hence vlt — -
J
waves pass over the point P in the

time t — - sees.
c

Thus the wave number vft — -
j is dependent only on how

the two points O and P are situated with respect to each other
and to the train of waves, and on how great the interval of
time t is between the departure of the first wave at O and the
arrival of the last at P. This number has nothing to do with
the system of reference. Thus it is an invariant in the sense
that we have attached to this word above.

This comes out most clearly if we use Minkowski's mode of

expression. According to this the departure of the first wave
from the zero point at the time / = o is an event, a world-point

;

the arrival of the last wave at the time t at the point P is another
event, a second world-point. But world-points exist without
relation to definite co-ordinate systems. And since the wave-

number v(t — -
j

is determined by the two world-points, only

it is independent of the system of reference, or is invariant.

From this there easily follow, either by intuition or by apply-
ing Galilei-transformations, all theorems about the behaviour
of the three characteristics of the wave, the frequency, direction,

and velocity, when the system of reference is changed. We
shall deduce these theorems in order and shall compare them
with experience.

8. The Doppler Effect

The fact that the observed frequency of a wave depends on
the motion both of the source of light and of the observer,
each with respect to the intervening medium, was discovered
by Christian Doppler (1842). The phenomenon may easily
be observed in the case of sound waves. The whistle of a
locomotive seems higher when it is approaching the observer
and becomes deeper at the moment of passing. The rapidly
approaching source of sound carries the impulses forwards
so that they succeed each other more rapidly. The motion of
an observer moving towards the source has a similar effect

;

he then receives the waves in more rapid succession. So the



FUNDAMENTAL LAWS OF OPTICS 105

same must hold in the case of light. Now the frequency of

the light determines its colour ; the rapid vibrations correspond
to the violet end of the spectrum, the slower vibrations to the
red. Hence when a light source is approaching an observer
or vice versa the colour of the light inclines a little towards
violet ; in the case when either is receding, a little towards red.

This phenomenon has actually been observed.
Now the light which comes from luminescent gases does not

consist of all possible vibrations but of a number of separate
frequencies. The spectrum that a prism or a spectral apparatus
depending on interference exhibits is no continuous band of

colour like the rainbow but separate sharp-coloured lines.

The frequency of these spectral lines is characteristic of the
chemical elements that are emitting light in the flame (spectral

analysis by Bunsen and Kirchhoff 1859). The stars, too,

have such line spectra, whose lines for the most part coincide
with those of the earth's elements. From this it is to be inferred
that the matter in the furthermost depths of astronomic space
is composed of the same primary constituents. The lines

of the stars do not, however, exactly coincide with the corre-
sponding lines on the earth but show small displacements
towards the one side for one half of the year, and towards the
other during the other half. These changes of frequency
are the results of the Doppler effect of the earth's motion
about the sun. During the one half of the year the earth
moves towards a definite star, and hence the frequency of all

the light waves coming from this star are magnified and the
spectral lines of the star appear shifted towards the side of
rapid frequencies (the violet end), whereas during the second
half of the year the earth moves away from the star, and hence
the spectral lines are then displaced towards the other side
(the red end).

This wonderful picture of the earth's motion in the spectrum
of the stars does not, indeed, present itself in an unadulterated
form. For it is clear that there will be superposed on it the
Doppler effect due to the emission of the light by a moving
source. Now, if the stars are not all at rest in the ether, their
motion must again manifest itself in a displacement of the
spectral lines. This becomes added to that due to the earth's
motion, but does not show the annual change, and hence may
easily be distinguished and separated from the former. Astro-
nomically this phenomenon is much more important still,

for it gives us information about the velocities of even the most
distant stars so far as the motion entails an approach towards
or a recession from the earth. It is not our object, however,
to enter more closely into these investigations.
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We are interested above all in the question as to what
happens when the observer and the source of light move in the

same direction with the same velocity. Does the Doppler

effect then vanish, does it depend only on the relative motion

of the material bodies, or does it not vanish and thereby betray

the motion of bodies through the ether ? In the former case

the principle of relativity would be fulfilled for the optical

phenomena that occur between material bodies.

The ether theory gives the following answer to this question.

The Doppler effect does not only depend on the relative

motion of the source of light and of the observer, but also to

a slight extent on the motions of both with respect to the ether.

But this influence is so small that it escapes observation;

moreover, in the case of a common translation of the source of

light and of the observer it is

rigorously equal to zero.

The latter point is so clear

intuitively that it need hardly

be emphasized. It is only neces-

sary to reflect that the waves
pass by any two points at rest

relatively to each other in the

same rhythm, irrespective of

whether the two points are at

rest in the ether or move with

a common motion. Nevertheless

the principle of relativity does

not hold rigorously, but only ap-

proximately, for the bodies emit-

ting and absorbing the light. We
shall prove this.

For this purpose we make use of the theorem above de-

rived concerning the invariance of the wave-number.

Let us allow a train of waves to start out in the ^-direction

from the zero-point of the system S which is at rest in the

ether, and let us count the waves that pass over a point P
until the time t has elapsed (Fig. 70). The path which the

waves traverse in this time is equal to the ^-co-ordinate of the

point P. Thus we must set s = x, and the wave-number

y
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to coincide, and at the time t the observer is just to have reach. <1

the point P. Then the same wave-number in the system S'

is equal to

"-?)
where v and c' denote the frequency and velocity as measured
by the moving observer.

We thus have

"(<-;) ="'('-?)
• • •

(38)

where the co-ordinates are connected by the Galilei trans-

formation (29) on p. 65.

%' = x — vt or x = %'
-f- vt

If we insert this we get

%' + vt
v[t H"-?) • •

(39)

and this must of course hold for all values of x' and t. If we
choose, in particular, t = I, %' = 0, we get

-:) (40)

That is the desired law. It expresses that an observer
moving in the same direction as the light waves measures a

frequency v that is reduced in the ratio (1 — -
J

: 1.

Conversely we now consider a light wave source that vibrates

with the frequency vQ , and moves in the direction of the #-axis

with the velocity v . Let an observer at rest in the ether measure
the frequency v. This case is immediately reducible to the
preceding one. For it is quite immaterial for our argument
whether it is the light source or the observer that is moving,
it only depends on the rhythm with which the waves impinge
on a moving point. The moving point is now the source of

light. We thus get the formula for this case from the preceding
case if we replace v in it by v and v by y :

•(-?)—
But here v is given as the frequency of the source of light, and
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v, the observed frequency, is being sought. Thus we must
solve for v and we get

*-;v • •

• (4i)

c

The observed frequency, therefore, appears magnified, since

the denominator is less than i, in the ratio I : ( i — -?Y

We see at once that it is not immaterial whether the observer

moves in the one direction or the source in the opposite direction

with the same velocity.

For if, in formula (41), we set v = —- v, it becomes

c

and this is different from (40) . In all practical cases the differ-

ence is certainly very small. We saw earlier (IV, 3, p. 82)

that the ratio of the velocity of the earth in its orbit around the

sun compared with that of light is p = - = 1 : 10,000, and
c

similar small values of /3 hold for all cosmic motions. But we
may then write as a very close approximation

for if we neglect B2 = = io-8 compared with 1,
100,000,000

we have (1 + j8) (1 - j8) = 1 - £
2 = 1.

This rejection of the square of /? = - will play an important
c

part in the sequel. It is almost always permissible because
such exceedingly small quantities as jS

2 = io-8 are accessible

to observation in only a few cases. The phenomena of the

optics (and electrodynamics) of moving bodies are nowadays,
indeed, classified according to whether they are of the order

P or £
2

. The former quantities are said to be of the first order,

and the latter of the second order in jS. In this sense we may
assert the following :

The Doppler effect depends only on the relative motion of

the source of light and of the observer if the quantities of the
second order are neglected.
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We see this, too, if we assume a simultaneous motion of the
source of light (velocity v ) and the observer (velocity v).

We then clearly obtain the observed frequency v if we insert v

from (41) in (40) :

-,(,-!)
V

I —
c= v

t

I- VJ
c

7

If the source of light and the observer have the same velocity

v = v, the fraction becomes equal to 1 and we get v = v .

Thus the observer notices nothing of a common motion with
the source relative to the ether. But as soon as v differs from
v , a Doppler effect comes about, the amount of which depends
not only on the difference of the velocities v — v . This would
allow the motion relative to the ether to be ascertained if the

difference were not of the second order and hence much too
small to be observed.

We see that the Doppler effect gives no useful practical

method of establishing motions
with respect to the ether in f Iff *^\

astronomic space. t"_~~~====|3 \-j- +

We must further add that \
the Doppler effect has been de-

tected with sources of light on
the earth. This required sources

of light moving with extremely great speed in order that

the ratio jS = - might attain a perceptible value. For this

purpose J. Stark (1906) used the so-called canal rays. If two
electrodes are fixed in an evacuated tube containing hydrogen
of very small density, and if one of the electrodes is perforated
and made the negative terminal (cathode) of an electric dis-

charge (Fig. 71), we get in the first place the so-called cathode
rays, and secondly, as Goldstein discovered in 1886, a reddish
luminescence penetrates through the hole or holes of the cathode,
due to positively charged hydrogen atoms or molecules moving
at a great speed. The velocity of these canal rays is of the
order v = io 8 cms. per sec, thus ]8 has the value

3I0 10 300

which is fairly high compared with the astronomic values.

Stark investigated the spectrum of canal rays and found
that the bright lines of hydrogen exhibited the displacement
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that was to be expected on the grounds of the Doppler effect.

This discovery became of great importance for atomic physics.

But it does not belong to our proper theme.

Finally we have to mention that Beloposki (1895) and

Galitzin (1907) proved the existence of a sort of Doppler effect

with the help of sources of light on the earth and moving

mirrors.

9. The Convection of Light by Matter

We have next to investigate the second characteristic of a

source of light, namely, its velocity. According to the ether

theory the velocity of light is a quantity that is determined by

the density of mass and the elasticity of the ether. Thus it has

a fixed value in the ether of astronomic space, but a different

value in every material body, which will depend on how the

matter influences the ether in its interior and carries it along

with itself.

If we first treat the velocity of light in astronomic space

we must conclude that an observer moving relatively to the

ether will measure a velocity different from that measured by

our observer at rest. For here the elementary laws of relative

motion clearly hold. If the observer moves in the same direc-

tion as the light, its velocity relative to the ether will seem

diminished by the amount of the velocity v of the observer.

Indeed, beings can be imagined that could overtake light.

The same result arises from the formulae above derived that

express the general relations between the properties of light

as established by two observers moving with translation

relatively to each other. If we set t = o, %' = I in formula

(39) we get

and if we insert the value for v from (40) in this we get

c c\ cJ

or, since v cancels out,

c' = c(i- V
) = c-v . . . (42)

This signifies that the velocity of light in the moving system

is determined according to the rules of relative motion.

This may also be interpreted by regarding an observer

who is moving through the ether as being in an ether wind that

blows away from or against the light waves just like the air
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brushes past a quickly moving motor car and carries the sound
with it.

Now, this furnishes us with a means of establishing the

motion of, say, the earth or the solar system relative to the

ether. We have two essentially different methods of measuring
the velocity of light, an astronomical and a terrestrial method.
The former, the old process of Romer, makes use of the eclipses

of Jupiter's satellites ; it measures the velocity of the light

that traverses the space between Jupiter and the earth. In

the latter method the source of light and the observer partici-

pate in the motion of the earth. Do these two methods give

exactly the same result or are there deviations that betray

motion relative to the ether ?

Maxwell (1879) called attention to the fact that by observing

the eclipses of Jupiter's moons it should be possible to ascertain

Jupiter

Fig. 72.

a motion of the whole solar system with respect to the ether.

Let us suppose the planet Jupiter at the point A of its orbit

(Fig. 72), which is the point nearest to the orbit of the sun in

the motion of the solar system in the direction shown. (It

has been assumed in the diagram that the orbit of Jupiter

intersects the orbit of the solar system at A.) In the course

of a year Jupiter moves only a short distance away from A,

since its time of revolution in its own orbit is about twelve years.

In one year the earth traverses its orbit once, and by observing

eclipses it is possible to find the time required by the light to

travel across the diameter of the earth's orbit. Now, since

the whole solar system moves in the direction of the sun to-

wards A the light from Jupiter to the earth runs contrary to

this motion, and its velocity appears increased. Let us now
wait for six years until Jupiter is situated at the opposite

point B of its orbit. The light now runs in the same direction
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as the solar system, and thus requires a longer time to cross the
earth's orbit ; so its velocity appears smaller.

When Jupiter is at A the eclipses of one of his satellites

during half a year (of the earth) must be delayed by the amount

of time U = , where I denotes the diameter of the earth's
c -f v

orbit. When Jupiter is at B the delay amounts to t 2
=

. If the solar system were at rest in the ether both delays

would be equal to t = -. Their actual difference, namely,
c

t - t - if
Z T

\ -
2 ^v 2 ^v

2 1 ~
\c — v c+ v)

~
c 2 — V 2 ~ c 2 (i — £

2
)

for which, by neglecting jS
2 in comparison with i, we may write

h — h = -= = 2/o0,
c 2

allows us to determine jS and hence also the velocity v = pc

of the solar system relative to the ether. Now, light takes

about eight minutes to travel from the sun to the earth, thus
t = 16 mins. or = iooo sees, (in round numbers). Thus from

a time-difference t» — t-i = i sec. we should get B =21 & H
2000

or v = Be = ^ =i^o kms. per sec.r
2000

J r

The velocities of the stars relative to the solar system,

which may be deduced from the Doppler effect, are mostly of

the order 20 kms. per sec, but velocities up to 300 kms. per sec.

occur in certain clusters of stars and spiral nebulae. The
accuracy of the astronomic determinations of time has thus far

not sufficed to establish a delay in the eclipses of a satellite of

Jupiter to the extent of one sec. or less in the course of half

a year. Yet it is not out of the question that refinement of

the methods of observation will yet disclose such a delay.

An observer situated on the sun, who happened to know the

value of the velocity of light in the ether at rest, would also

be able to ascertain the motion of the solar system through
the ether by means of the eclipses of Jupiter's satellites. To
do this he would have to measure the delay in the eclipses

during half a revolution of Jupiter in his orbit. The same
formula t 2

— tt
= 2t p is valid for this, but now t denotes the

time that the light requires to traverse the diameter of Jupiter's

orbit. This value of t is (about 2\ times) greater than the
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value used above for the earth's orbit, 16 mins., and the delay

t %
— tt becomes greater in the same proportion. But for the

same reason the time of revolution of Jupiter, during which

the eclipses must be observed consecutively, is much greater

than (about 12 times as great as) an earth year, so that this

method, which could also be applied by an observer on the

earth, seems to promise no advantage.

At any rate the fact that the accuracy that is nowadays

attainable has brought to light not even a delay of several

seconds proves that the velocity of the solar system with respect

to the ether is not much greater than the greatest known velo-

cities of the stars relative to each other.

We next turn our attention to the terrestrial modes of

measuring the velocity of light. Here it is easy to see why
they do not allow us to draw conclusions about the motion

of the earth through the ether. We have already indicated

the ground for this above when mentioning these methods

for the first time (IV, 3, p. 82), for the light traverses one

and the same path in its journey there and back. It is only

a mean velocity during the path to and fro that is actually

measured. The deviation of this from the velocity of light c

in the ether is, however, a quantity of the second order with

respect to j8 and is not accessible to observation. For if / is

the length of path then the time that the light requires for the

first journey, in the direction of the earth's motion, is equal to

and the time for the return journey is —-— , thus the
c — v

whole time is

/I I \ _ 2lc _ 2lc

\c + v c — v)
~

(c + v)(c — v) c2 —

The mean velocity is 2/ divided by this time, thus it is

t =* , e(, _
J)

and hence it differs from c by a quantity of the second order.

Besides the direct measurement of the velocity of light there

are numberless other experiments in which the velocity of

light comes into play. All interference and diffraction pheno-

mena are brought about by making light-waves that travel along

different paths meet at the same place and causing them to be

superposed on each other. Refraction at the boundary of two

bodies arises through light having different velocities in them

;

thus this velocity enters into the action of all optical apparatus

that contains lenses, prisms, and similar things. Is it not possible

8
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to think out arrangements in which the motion of the earth and

the " ether wind " produced by it make themselves remarked?
Very many experiments have been designed and carried

out to discover this motion. The general result of experi-

ments with sources of light on the earth teaches us that not the

slightest influence of the ether-wind is ever observable. It

is true that up to recent times we have been dealing with ex-

perimental arrangements that allow only quantities of the first

order in jS to be measured. The fact that this must always lead

to a negative result easily follows from the circumstance that

the true duration of the motion of the light from one place to

another is never measured, but only differences of such times

for the same light-path or their sum for the motion there and

back. For the reason given above we thus see that the

quantities of the first order always cancel out.

But we might expect a positive result if we took a source

not on the earth but in the heavens. If we direct a telescope

at a star, to which the

momentary velocity v of

the earth is just directed

(Fig. 73), the velocity of

light in the lenses of the

telescope relative to the

substance of the glass will

be greater by the amount v

Fig. 73. than if the earth were at rest,

and if we look at the same
star six months later through the telescope, the velocity of

light in the lenses will be smaller by the amount v. Now,
since the amount of the refraction in a lens is determined by
the velocity of light, we might expect the focus of the lens

to have a different position in these two cases. This would be

an effect of the first order. For the difference of the velocity

of light in the two cases would be 2Vt
and its ratio to the velocity

in the ether at rest would be— = 2)3.
c

Arago actually carried out this experiment, but found no

change in the position of the focus. How is this to be ex-

plained ?

We clearly made the assumption above that the velocity

of light in a body that moves in the ether against the ray with

the velocity v is greater by just this amount than if the body
were at rest in the ether. In other words, we have assumed

that material bodies pierce through the ether without carrying

it along in the slightest, just like a net that is carried through

water by a boat.
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The results of experiment teach us that this is manifestly

not the case. Rather, the ether must participate in the motion

of matter. It is only a question of how much.
Fresnel established that to explain Arago's observation

and all other effects of the first order it was sufficient to assume
that the ether is only partly carried along by matter. We shall

forthwith discuss in detail this theory, which has been brilliantly

confirmed by experiment.

It was Stokes (1845) above all others who later adopted the

more radical standpoint that the ether in the interior of matter

shares completely in its motion. He assumed that the earth

carries along with itself the ether which is in its interior, and
that this ether motion gradually decreases outwards until the

state of rest of the ether in the universe is reached. It is clear

that then all optical phenomena on the earth occur exactly

as if the earth were at rest. But in order that the light that

comes from the stars may not experience deflections and changes

of velocity in the transi-

tional stratum between the ,9 ^/ ^ ^ \^,

ether of space and the ether

converted by the earth,

special hypotheses concern-
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The transmitted ray (ray 2) traverses the same path in the

reverse sense and interferes with ray 1 in the field of vision.

A transparent body, say a tube W filled with water, is next

interposed between S x and S 2 , and the whole apparatus is

mounted so that the straight line connecting Si with S 2 can

be placed alternately in the same direction as, and opposite to,

the earth's motion about the sun. Let the velocity of light in

water that is at rest be c v This value is a little smaller than the

velocity in vacuo and the ratio of the one to the other —= n
ci

is called the refractive index of water. The velocity of light in air

differs only inappreciably from c, and thus the refractive index of

air is almost exactly equal to 1. Now the water is carried along

by the earth in its orbit. If the ether in the water were not

to participate in this motion at all then the velocity of light

in the water relative to the absolute ether (in outside space)

would be unaltered ; that is, it would be equal to c lt and, for

a ray travelling in the direction of the earth's motion, it would

be Cj + v, and ct relative to the earth. We shall assume

neither of these cases to begin with, but shall leave the amount

of convection undetermined. Let the velocity of light in the

moving water relative to the absolute ether be a little greater

than c lt say c x + <j>, and hence c x -f </» — v relative to the

earth. We" wish to determine the unknown convection co-

efficient <j> from experiment. If it is zero, no convection occurs

;

if it is v, complete convection occurs. Its true value must lie

between these limits. We shall, however, make one assumption,

namely, that the convection in air may be neglected in com-

parison with that in water.

Now, let I be the length of the tube of water. Then the ray 1

requires the time = to traverse the tube, if the earth
c x + <t>

— v

is moving in the direction from S x to S 2 . To traverse the cor-

responding air distance between S3 and P the same ray requires

the time —— . Thus, on the whole, the time that the ray 1

c -\- v

requires to traverse the two equal paths in water and in air is

1

+
'

c Y -f- (j) — V c -\- V

The ray 2 travels in the reverse direction. It first traverses

the air-distance in the time , then the water-distance in
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the time , and hence altogether it requires for the

same distances in the air and water the time

1 +
l

c — v c Y
—

<f>
-\- v

Now, experiment shows that the interferences do not shift

in the slightest when the apparatus is turned into the direction

opposite to that of the earth's velocity or, indeed, into any

other position whatsoever. From this it follows that the

rays i and 2 take equal times, independent of the position

of the apparatus with respect to the earth's orbit, that is,

c x + </>
— v c -f- v c — v c x

—
<f>

-\- v

We can calculate </> from this equation. We shall pass over

the somewhat circuitous calculation * and shall give only the

result which, if we neglect quantities of the second and higher

orders, is :

#-(x-5>
• • •

(43)

This is the famous convection formula of Fresnel, who,

indeed, found it by a different, more speculative, process.

Before we mention his assumption let us see what the formula

actually asserts. According to it the convection is the greater

the more the refractive index exceeds the value i which it has

in vacuo. For air c x is almost equal to c, and n almost equal to i,

thus
<f>

is almost zero, as we predicted above. The greater the

refractive power, the more complete is the convection of the

light. Now, the velocity of light in a moving body, measured

* The steps of the argument are :

(c + v) + fa + <P
- ») = fa - <t> + v) + (g - v)

f

(*!+<*>- V)(C +V) " (C- »)fa - <t> + V)

[c + ex + <p)(c - »)fa -
<P + v) = {c + cy - <t>){c + z^)fa +<t>-v),

V* + c l

r-t- = d m — c
V

and. approximately, we have

(-*>•
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relative to the absolute ether is

'! + *=*!+ (l-i)l/,

and relative to the moving body it is

ct + i>
- v = cY + (i - ^)v -v = Cl -

J.

This last formula will serve us as a link to Fresnel's inter-

pretation. He assumed that the density of the ether in a

material body is different from the density in free ether ; let

the former be pj and the latter p.

We next imagine the moving body, say, in the form of a beam,

whose length is parallel to the direction of motion ; let its basic

face be of unit area. In the motion of the beam through the

ether the front face advances by the distance v in a unit of

time (Fig. 75), and this sweeps out a

y\ volume v (area of the face multiplied

-i'_J by the height). This volume con-

] / tains an amount of ether pv. Thus
-* this enters into the beam through

^4

FlG 7
- the front face. Here it assumes a

new density and will thus move on

with a different velocity v with respect to the body, since, for

the same reasons as above, its mass must also equal p{u lt and

we get

Plv 1
= pv

or Vi = -v-
Pi

This is in a certain sense the strength of the ether wind in

the beam moving with the velocity v. Light which moves

with the velocity cx relatively to the condensed ether moves

relatively to the body with the velocity

c _ Vl = c x
— £-v.

Pi

Now we have seen that according to the result of Hoek's

experiment the velocity of light relative to the moving body is

1

Consequently we must have

P. - - L = cj!

Pl n 2
' c 2

'
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Thus the condensation £-* is equal to the square of the

coefficient of refraction.

Furthermore, we can conclude from this that the elasticity

of the ether must be the same in all bodies. For formula (37)

on p. 99 tells us that in every elastic medium c'
1 _# Thus

%-

/

.\

in ether p — c 2
p, in matter p x

= c-fp^ But according to the

above result concerning the condensation of ether in matter
these two expressions are the same.

This mechanical interpretation of the convection coefficient

by Fresnel has exerted a great influence on the elaboration of

the elastic theory of light. But we must not disguise from our-

selves that it is open to strong objections. As is well known,
rays of light of different colour (frequency) have different

refractive indices n, that is, different velocities. Hence it

follows that the convection
,

coefficient has a different

value for each colour.

But this is incompatible

with Fresnel's interpreta-

tion, for then the ether

would have to flow with a

different velocity in the

body according to the

colour. Thus there would
be just as many ethers as

there are colours, and that

is surely impossible.

The convection formula

(43), however, is founded
on the results of experi-

ment without regard to the
shall see that it is derived

F

Fig. 76.

mechanical interpretations. We
in the electro-magnetic theory of

light from ideas concerning the atomic structure of matter
and electricity.

It is very difficult to test Fresnel's formula by means of

experiments on the earth because it requires that transparent
substances be moved with extreme rapidity. Fizeau succeeded
in carrying out the experiment (185 1) by means of a sensitive

interferometer arrangement.
The apparatus used by him is quite similar to that of Hoek,

except that both light-paths S
XS 2 and S3 are furnished with

tubes in which the water can circulate ; they are arranged
so that the ray 1 flows directly parallel to the water, and the
ray 2 directly against it. Fizeau tested whether the water
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carries the light along with it by observing whether the inter-

ference fringes were displaced when the water was set into

rapid motion. This displacement actually occurred, but very

much less than to the extent that would correspond to

complete convection. Exact measurement disclosed perfect

agreement with Fresnel's convection formula (43).

10. Aberration

We shall now discuss the influence of the motion of bodies

on the direction of light-rays, in particular the question whether

the motion of the earth through the ether can be ascertained

by observing any phenomena accompanying changes of direction.

Here again we have to distinguish whether we are dealing with

an astronomic or an earth source of light.

The apparent deflection of the light that reaches the earth

from the stars is the aberration,

which we have already dis-

cussed from the point of view

of the corpuscular theory (IV,

3, p. 81). Although the ex-

planation there given is very

simple, it is correspondingly

complicated from the point of

view of the wave-theory, for it

is easy to see that a deflection

of the wave-planes does not

occur at all. This is seen

most readily in the case where

the rays fall perpendicularly
FlG

- 77 -

to the motion of the observer.

For then the wave-planes of this motion are parallel and

are so perceived by the moving observer (Fig. 77). But

calculation tells us the same. Let us place a stationary co-

ordinate system S and a moving system S' so that the x- and

the #'-axis each fall in the direction of motion, and let us count

the waves that have passed over any point P from the moment

t = to the moment t. This number is, as we know, v(i — ~\

where s is the path traversed by the waves. In the case of

perpendicularly incident waves we clearly have s = y.

The invariance of the wave-number requires that

<•-9 ='(<-9

if the co-ordinates are transformed into each other by the
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Galilei transformation. In this case the jy-co-ordinate remains

unaltered, and hence we must have

v = v and - = — . thus c = c'

.

c c

Hence the moving observer sees a wave of exactly the same
frequency, velocity, and direction. For if this were altered

then the wave-number in S', besides depending on y' , would
also have to depend on x'

.

Thus it seems as if the wave theory is unable to account

for the simple phenomenon of aberration, which has been known
for almost 200 years.

But the position is not quite so bad as this would indicate.

The reason for the failure of the argument given just above

is that the optical instruments with which the observations

are made, and which include the naked eye, do not establish

the position of the wave that arrives, but accomplish something

totally different.

The function of the eye or of the telescope is called optical

representation, and it consists in combining the rays emitted

by a luminescent object into one picture. In this process

the vibrational energy of the particles of the object are trans-

ported by the light-waves to the corresponding particles of

the picture. The paths along which this transference of energy

takes place are actually the physical rays. But energy is

a quantity which, according to the law of conservation, can

move about and be transformed just like a substance, but cannot

be created or destroyed. Hence it seems reasonable to apply

the laws of the corpuscular theory to the motion of energy.

As a matter of fact the simple derivation of the aberration

formula given earlier is quite correct if we define the light-

rays as the energy-paths of the light-waves and apply the

laws of relative motion to them, as if they were streams of

projected particles.

But we may also obtain this aberration formula, without

applying this conception of rays as energy paths, by following the

refraction of waves individually in the lenses or prisms of the

optical instrument. For this we require a definite convection

theory. Stokes's theory of complete convection can account
for aberration only by making assumptions about the motion
of the ether which are not admissible. We have already called

attention to these difficulties above. Fresnel's theory gives

a law of refraction of waves of light at the surface of moving
bodies from which the aberration formula follows exactly.

The substance of the body through which the light passes

does not affect the result, although the value of the convection
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coefficient is different in every substance. To test this directly

Airy (1871) filled a telescope with water and ascertained that

the aberration retained its normal value. The aberration is,

of course, no longer an effect of the first order if the light-wave

and the observer have no motion relative to each other. From
this it also follows that in all optical experiments with sources

of light on the earth no deflection of the rays through the ether

wind occurs. Fresnel's theory succeeds in representing these

facts so that they are in agreement with experiment. It is

unnecessary to enter into the details.

11. Retrospect and Further Development

We have treated the luminiferous ether as a substance

that obeys the laws of mechanics. Thus it satisfies the law

of inertia, and hence where there is no matter, in astronomic

space, it will be at rest in an appropriate inertial system.

Now if we refer all phenomena to a different inertial system,

exactly the same laws hold for the motions of bodies and of

the ether, hence also for the propagation of light, but, of course,

only in as far as they concern accelerations and mutual force

effects. We know that the velocity and the direction of a

motion are quite different with respect to different inertial

systems ; for we may regard every body moving in a straight

line as at rest merely by choosing a suitable system of refer-

ence, namely, one that moves with it. Thus in this almost

trivial sense the classical principle of relativity must hold

for the ether regarded as a mechanical substance.

From this it follows, however, that the velocity and direction

of light-rays must appear different in every inertial system.

Thus it was to be expected that it would be possible to ascertain

the velocity of the earth or of the solar system by observing

optical phenomena at the surface of the earth, which are in

the main conditioned by the velocity and direction of the light.

But all experiments performed with this end in view led to

a negative result. Hence it appears that the velocity and
direction of the light-rays are quite independent of the motion

of the astronomic body on which the observations are carried

out. Or, expressed in other words, optical phenomena depend
only on the relative motions of material bodies.

This is a principle of relativity which seems quite similar

to the classical principle of mechanics, and yet it has a different

meaning. For it refers to velocities and directions of motional

events, and in mechanics these are not independent of the motion
of the system of reference.

Now there are two possible points of view. One of these
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starts from the assumption that optical observations actually

introduce something that is fundamentally new, namely,

that light behaves differently from material bodies as regards

direction and velocity. So soon as optical observations are

taken as convincing evidence this point of view will be adopted

if all speculations about the nature of light are left out of con-

sideration. We shall see that Einstein finally pursued this

path. It, however, requires utter freedom from the conventions

of the traditional theory, which is attained only when the

Gordian knot of constructions and hypotheses has become so

intricate that the only solution left is to cut it.

But in our above discussion we were still living in the most
flourishing period of the theory of the mechanical ether.

This theory was compelled to regard the optical principle of

relativity as a secondary, in a certain sense half accidental

phenomenon, brought about by the compensating effect of causes

that were acting in opposition to each other. The fact that

such is possible to a certain extent is due to the circumstance

that it is still open to make hypotheses about how the ether

moves and how it is influenced in its motion by moving bodies.

Now it is a great achievement of Fresnel's convection hypothesis

that it actually accounts for the optical principle of relativity,

so far as quantities of the first order are concerned. So long

as the accuracy of optical measurements did not attain the

great improvement necessary to measure quantities of the

second order, this theory sufficed all demands of experiment

with one possible exception, to which, curiously enough, very

little attention was paid. For if improved accuracy in astro-

nomical measurement should arrive at the result that by
observing the eclipses of Jupiter's satellites according to the old

method of Romer (see p. 80) an influence of the motion of

the solar system on the velocity of light were to be revealed,

then certainly the ether theory would be confronted with a

problem that would appear insoluble. For it is clear that this

effect of the first order could be argued away by no hypothesis

about the convection of the ether.

So we recognize the importance of the experimental task

of measuring the dependence of optical events on the earth's

motion as far as quantities of the second order. Only the

solution of this problem can give us a decision as to whether

the optical principle of relativity holds rigorously or only

approximately. In the former case Fresnel's ether theory would

fail ; we should then be confronted with a new state of affairs.

Historically, this occurred only about 100 years after

Fresnel's time. In the meanwhile the ether theory was de-

veloped in other directions. For at the outset there was not
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one ether but a whole series, an optical, a thermal, an electrical,

a magnetic ether, and perhaps a few more. A special ether

was invented, as a carrier, for every phenomenon that occurs

in space. At first all these ethers had nothing to do with each

other, but existed in the same space independently of each other,

side by side or, rather, interwoven. This state could not, of

course, last in physics. Relationships were soon found be-

tween the phenomena of different branches that were at first

separate, and so there emerged finally one ether as the carrier

of all physical phenomena that bridge over space free of matter.

In particular, light showed itself to be an electromagnetic

process of vibration, of which the carrier is identical with the

medium that transmits electric and magnetic forces. These
discoveries first gave the ether theory strong support. At
last, indeed, the ether came to be identified with Newtonian
space. It was to persist in absolute rest and was to transmit

not only electromagnetic effects but also indirectly to generate

the Newtonian inertial and centrifugal forces.

We shall next describe the development of the theory.

The process has features resembling the trial of a case in court.

The ether is alleged to be the universal culprit, the pieces of

evidence accumulate overwhelmingly, until at the end the

undeniable proof of an alibi, namely, Michelson and Morley's

experiment about the quantities of the second order, and its

interpretation by Einstein puts an end to the whole business.



CHAPTER V

THE FUNDAMENTAL LAWS OF ELECTRODYNAMICS

i. Electro- and Magneto-statics

THE fact that a certain kind of ore, magnetite, attracts

iron, and that rubbed amber (elektron in Greek) attracts

and holds light bodies was known even to the ancients.

But the sciences of magnetism and electricity are products
of more recent times, which had been trained by Galilei and
Newton to ply Nature with rational questions and to read the

answer out of experiment.

The fundamental facts of electric phenomena were estab-

lished from the year 1600 onwards. We shall recapitulate

them briefly. At that time friction was the exclusive means
of producing electrical effects. Gray discovered (1729) that

metals, when brought into contact with bodies that have been
electrified by friction, themselves acquire similar properties.

He showed that the electrical effects can be passed along
in the metals. This led to the classification of substances
as conductors and non-conductors (insulators). It was dis-

covered by du Fay (1730) that electrical action is not always
attraction but may also be repulsion. He interpreted this

fact by assuming two fluids (nowadays we call them positive

and negative electricity), and he established that similarly

charged bodies repel each other, oppositely charged bodies
attract each other.

We shall here define the conception of the electric charge

quantitatively at once. In doing so we shall not follow rigor-

ously the very often circuitous steps of argument that led

historically to the enunciation of the conceptions and laws,

but we shall rather select a series of definitions and experi-

ments in which the logical sequence comes out most clearly.

Let us imagine a body M that has somehow been electrified

by friction. This now acts attractively or repulsively on other
electrified bodies. To study this action we shall take small
test bodies, say spheres, whose diameters are very small com-
pared with their closest approach to the body M, at which we

125
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still wish to investigate the force. If we bring such a test

body P near the body M, whose action we wish to study,

P experiences a statical force of definite magnitude and direc-

tion, which may be measured by the methods of mechanics,

say,'by balancing it against a weight with the help of levers

or threads.

We next take two such test bodies P x and P
2 ,

bring

them in turn to the same point in the vicinity of M, and measure

in each case the forces K x and K 2 as regards size and direction.

We shall henceforth adopt the convention that opposite forces

are to be regarded as being in the same direction, but their

values are to have opposite signs attached in calculations.

Experiment shows that the two forces have the same direc-

tion, but their values may be different and they may have

different signs.

Now let us bring the two test bodies to a different point

near M and let us again measure the forces Kx
' and K 2

' as

regards value and direction. They have again the same

direction, but in general they have different values and a

different sign.

If we next form the ratio K x
: K 2 of the forces at the first

point, and then the ratio K/ : K 2
' at the second, it is found

that both have the same value, which may be positive or nega-

tive :

K 2 K 2

'"

From this result we may conclude :

i. The direction of the force exerted by an electrified body

M on a small test-body P does not depend at all on the nature

and the electrification of the test-body, but only on the pro-

perties of the body M.
2. The ratio of'the forces exerted on two test-bodies brought

to the same point in turn is quite independent of the choice

of the point, that is from the position, nature, and electrifica-

tion of the body M. It depends only on the properties of the

test-bodies.

We now choose a definite test-body, electrified in a definite

way, as a unit body, and we ascribe to it the charge or amount

of electrification +i. With the aid of this we everywhere

measure the force that the body M exerts. Let it be denoted

by E. Then this also determines the direction of the force K
exerted on any other test-body P. The ratio K : E, however,

depends only on the test-body P and is called its electric charge e.

This may be positive or negative according as K and E are
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in the same or in opposite directions, in the narrower sense.

Thus we have

- - e or K = eE . . . (44)

The force E on the charge 1 is also called the electric intensity

of field of the body M. When once the unit charge has been
fixed it depends only on the electrical nature of the body M
and determines its electrical action in the surrounding space,
or as we usually say, its " electric field."

As for the choice of the unit charge, it would be almost
impossible to fix this practically by a decree concerning the
electrification of a definite test-body ; rather, one will seek to
find a mechanical definition for it. This is successfully done
as follows :

We can first charge two test-bodies equally strongly. The
criterion of equal charges is that they experience the same
force from the third body M when placed successively at the same
point near it. The two bodies will then repel each other with
the same force. We now say that their charge is 1 if this re-

pulsion is equal to the unit of force when the distance between
the two test-bodies is equal to unit length. Nothing at all

is herein assumed about the dependence of the force on the
distance.

Through these definitions the amount of electricity or the
electric charge becomes just as much a measurable quantity
as length, mass, or force.

The most important law about amounts of electricity,

which was enunciated independently in 1747 by Watson and
Franklin, is the law that in every electrical process equal
amounts of positive and negative electricity are always formed.
For example, if we rub a glass rod with a piece of silk, the glass

rod becomes charged with positive electrification ; an exactly
equal negative charge is then found on the silk.

This empirical fact may be interpreted by saying that the
two kinds of electrification are not generated by friction but are
only separated. They are represented as two fluids that are
present in all bodies in equal quantities. In non-electrified

neutral " bodies they are everywhere present to the same
amount so that their effects outwards are counterbalanced.
In electrified bodies they are separated. One part of the
positive electrification, say, has flowed from one body to another,
and just as much negative has flowed in the reverse direction.

But it is clearly sufficient to assume one fluid that can
flow independently of matter. Then we must ascribe to the
matter that is free of this fluid a definite charge, say positive,
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and to the fluid the opposite charge, that is, negative. The
electrification consists in the negative fluid flowing from one
body to the other. The first will then become positive because

the positive charge of the matter is no longer wholly compen-
sated ; the other becomes negative because it has an excess

of negative fluid.

The struggle between the supporters of these two hypo-
theses, the one-fluid theory and the two-fluid theory, lasted a
long time, and of course remained fruitless and purposeless

until it was decided by the discovery of new facts. We shall not

enter further into these discussions, but shall only state briefly

that characteristic differences were finally found in the be-

haviour of the two electrifications ; these differences indicated

that the positive electrification is actually firmly attached to

matter, but the negative can move freely. This doctrine

still holds to-day. We shall revert to this point later in dealing

with the theory of electrons.

Another controversy gathered round the question as to

how the electrical forces of attraction and repulsion are trans-

mitted through space. The first decades of electrical research

were not yet carried out under the influence of the Newtonian
theory of attraction. Action at a distance seemed unthinkable.

Metaphysical theorems were held to be valid, such as that

matter can act only at points where it is itself present, and thus

diverse hypotheses were evolved to explain electrical forces,

that emanations flowed from the charged bodies and exerted

a pressure when they impinged on bodies, and similar assump-
tions. But after Newton's theory of gravitation had begun
to reap its victories the idea of a force acting directly at a dis-

tance gradually became a habit of thought. For it is, indeed,

nothing more than a habit of thought when an idea impresses

itself so strongly on minds that it is used as the last principle

of explanation. It does not then take long for metaphysical
speculation, often in the garb of philosophic criticism, to evolve

the proof that the correct or accepted principle of explanation

is a logical necessity and that its opposite cannot be imagined.

But, fortunately, progressive empirical science does not, as

a rule, trouble about this, and, when new facts demand it,

it often has recourse to ideas that have been condemned.
The development of the doctrine of electric and magnetic
forces is an example of such a cycle of theories. At the be-

ginning we see a theory of contiguous action based on meta-

physical grounds ; it is replaced by a theory of action at a

distance on Newton's model. At the end this becomes trans-

formed, owing to the discovery of new facts, into a general

theory of contiguous action again. But this fluctuation is
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no sign of weakness. For it is not the pictures that are con-

nected with the theories which are the essential features, but the

empirical facts and their conceptual relationships. Yet if

we follow these we see no fluctuation but only a continuous
development full of inner logical consistency. We may
justifiably omit the first theoretical attempts of pre-Newtonian
times from the series because the facts were known too incom-
pletely to furnish really convincing starting-points for theory.

But the fact that the theory of action at a distance then arose

in conformity with the model of Newtonian mechanics is founded
quite naturally in the nature of electrical facts. A branch of

research which had at its disposal only the experimental means
of the 18th century could not do otherwise, on the ground of

the observations possible at that time, than come to the de-

cision that the electrical and the magnetic forces act at a dis-

tance in the same way as gravitation. Nowadays, too, it is

absolutely permissible, from the point of view of the highly

developed theories of contiguous action of Faraday and Max-
well, to represent electro- and magneto-statics by means of

actions at a distance, and when properly used, they always
lead to correct results.

The idea that electric forces act like gravitation at a distance

was first conceived by Aepinus (1759). He even went so far

as to regard gravitation and electricity as effects of the same
fluid. He supposed, in the sense of the one-fluid theory,

that matter devoid of electric fluid would repel other matter,

but that there is always a little excess of fluid present that

effects the gravitational attraction. Curiously enough he did

not succeed in setting up the correct law for the dependence
of electrical actions on the distance, but he was able to explain

the phenomenon of influence qualitatively. This consists in

a charged body acting attractively not only on other charged
bodies but also on uncharged bodies, particularly on conducting
bodies, for a charge of the opposite sign is induced on the side

of the influenced body nearest the acting body, whereas a

charge of the same sign is driven to the further side (Fig. 78)

;

hence the attraction outweighs the repulsion.

The true law was presumably first found by Priestley,

the discoverer of oxygen (1767). He discovered it by an
ingenious indirect way which essentially carries more con-

viction with it than that of direct measurement. Independently
of him Cavendish (1771) derived this law by the same method.
But it receives its name from the physicist who first proved
it by measuring the forces directly, namely, Coulomb (1785).

The argument of Priestley and Cavendish ran somewhat as

follows :
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If an electric charge is given to a conductor then it cannot

remain in equilibrium in the interior of the conducting sub-

stance since particles of the same charge repel each other.

Rather, they must tend to the outer surface at which they

distribute themselves in a certain way so as to be in equilibrium.

Now experiment teaches very definitely that no electric

field exists within a space that is enclosed on all sides by
metallic walls, no matter how strongly the envelope is charged.

The charges on the outer surface of the empty space must thus

distribute themselves so that the force exerted at each point

in the interior must vanish. Now, if the empty space has

the particular form of a sphere, reasons of symmetry convince

us that the charge can only be distributed uniformly over the

surface. If p is the charge per unit area of surface (density of

charge, then amounts of electricity pfx + pf2 are on the two por-

+ +
+ +

Fig. 78.

Fig. 79.

tions flf f2 of the surface. The force that a small portion of

surface fx of this kind exerts on a test-body P situated in the

interior of the sphere and carrying the charge e is then K x

= tfp/iRi, where R x denotes the force which is exerted between

two units of charge placed at P and flf and which somehow
depends on the distance r x between P and fv Now corre-

sponding to each portion of surface ft there is an opposite por-

tion f2 , which is obtained by connecting the points of the boun-

dary of fx with P and producing these lines through P until

they intersect the sphere. The two portions of area fx and f2

are thus cut out of the surface of the sphere by the same double

cone with its apex at P (Fig. 79), and the angles between them
and the axis of the double cone are equal. The values off1 and

f2 are thus in the ratio of the squares of the distances from P :

The charge pf2 on /3 exerts the force K 2 = epf2
R

2
on P,
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where K 2
depends on r 2 in some way ; K 2 is of course oppositely

directed to Kv
It readily suggests itself to assume that all the forces acting

on P can only then neutralize each other if the forces due to

two opposite portions of area exactly counterbalance, that is,

when Kj = K 2 . It is possible to prove this assumption, but

that would take us too far here. If we take it for granted,

then it follows that/^ =/2R 2 , or

R 2 ft r/

Accordingly R^ 2 = R 2r 'f = c

where c is a quantity independent of the distance r. This

determines R x
and R 2 , namely,

R,-A R.
c

I I

Hence, in general, the force R between two unit charges at

a distance r apart must have the value

R = £
,

r 2

In conformity with our convention about the unit of electric

charge we must set c = I. The force between two unit charges

unit distance apart is to be equal to I. With this convention

the force that two bodies carrying the charges e x and e 2 and at

a distance r apart exert on each other is

K = ^2
• • • • (45)

This is Coulomb's law. In its formulation we assume that

the greatest diameter of the charged bodies is, of course, small

compared with their distances apart. This restriction ex-

presses that this law, just like the law of gravitation, is an

idealized elementary law. To deduce from it the action of

bodies of finite extent we must consider the electricity dis-

tributed over them to be divided into small parts, then calculate

the effects of all the particles of the one body on all those of

the others in pairs and sum them.

Formula (45) fixes the dimensions of quantity of electricity

e 2

since we have for the repulsion of two equal charges - = K,

that is, e = r^/K, hence

[•] = [WK] = [i^J] = [VMl].
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This, at the same time, fixes the unit of charge in the C.G.S.

. , cm. ^/errn. cm.
system : it must be written ^-5

sec.

The electric intensity of field E, defined by K = eE, has the

dimensions

™=a=[E7iH#]-[#]-[ws
and its unit is —a/-—'•

sec. V cm.

After Coulomb's law had been set up electrostatics became
a mathematical science. Its most important problem is this :

given the total quantity of electricity on conducting bodies,

to calculate the distribution of charges on them under the

action of their mutual influence and also the forces due to these

charges. The development of this mathematical problem is

interesting in that it very soon became changed from the original

formulation based on the theory of action at a distance to a

theory of pseudo-contiguous action, that is, in place of the

summations of Coulomb forces there were obtained differential

equations in which the intensity of field E or a related quantity

called potential occurred as the unknown. But we cannot here

further discuss these purely mathematical questions in which

Laplace (1782), Poisson (1813), Green (1828), and Gauss (1840)

have achieved meritorious results. We shall emphasize only

one point : in this treatment of electrostatics, which is usually

called the theory of potential, we are not dealing with a true

theory of contiguous action in the sense which we attached to

this expression above (IV, 6, p. 95). For the differential

equations refer to the change in the intensity of field from place

to place, but they contain no member that expresses a change

in time. Hence they entail no transmission of electric force

with finite velocity but, in spite of their differential form, they

represent an instantaneous action at a distance.

The doctrine of magnetism developed in the same way as

electrostatics. We may, therefore, express ourselves briefly.

The most essential difference between these two regions of

phenomena is that there are bodies that conduct electricity,

whereas magnetism is always bound to matter and can only

move with it.

A lozenge-shaped magnetized body, a magnet needle, has

two poles, that is, points from which the magnetic force seems

to start out, and again the law holds that like poles repel,

unlike poles attract. If we break a magnet in halves, the two

parts do not carry opposite magnetic charges, but each part
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receives a new pole at the broken surface and again represents

a complete magnet with two equal but opposite poles. This

holds, no matter into how many parts the magnet be broken.

From this it has been concluded that there are indeed two

kinds of magnetism as in the case of electricity, that they

cannot move freely, and that they are present in the smallest

particles of matter, molecules, in equal quantities but separate.

Thus each molecule is itself a small magnet with a North and

a South pole (Fig. 80). The magnetization of a finite body

consists in all the elementary magnets that were originally in

complete disorder being brought into the same direction. Then

the effects of the alternate North (+) and South (— )
poles

counterbalance except for those at the two end faces, from which

therefore all the action seems to start.

By using a very long thin magnet needle it is possible to ar-

range so that in the vicinity of the one pole the force of the other

becomes inappreciable. Hence in magnetism, too, we may ope-

rate with test-bodies, namely, with the poles of very long thin

OOOOG
Fig. 80.

magnetic rods. These allow us to carry out all the measure-

ments that we have already discussed in the case of electricity.

We thus succeed in defining the amount of magnetism or the

pole strength p and the magnetic intensity of field H. The

magnetic force that a pole p experiences in the field H is

K = pU . . . . (46)

The unit of pole is chosen so that two unit poles at unit

distances apart exert the repulsive force 1 on each other.

The law according to which the force between two poles p x

and p 2 changes with the distance was also found by Coulomb

from direct measurement. Just like Newton's law of attraction,

it has the form

K=Hs .... (47)

Clearly the dimensions of magnetic quantities are the same

as those of the corresponding electric quantities, and their

units have the same notation in the C.G.S. system.

The mathematical theory of magnetism runs fairly parallel
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with that of electricity. The most essential difference is that

the true quantities of magnetism remain attached to the

molecules, and that the measurable accumulations that condition

the occurrence of poles in the case of finite magnets arise only

owing to the summation of molecules that point in the same
direction.

2. Voltaic Electricity and Electrolysis

The discovery of so-called contact electricity by Galvani

(1780) and Volta (1792) is so well known that we may pass it

by here. For however interesting Galvani's experiments with

frogs' legs and the resulting discussion about the origin of

electric charges may be, we are here more concerned with

formulating conceptions and laws clearly. Hence we shall

recount only the facts.

If two different metals be dipped into a solution (Fig. 81),

say, copper and zinc into dilute sulphuric acid, the metals

manifest electric charges that exert exactly

the same action as frictional electricity. Ac-
cording to the fundamental law of electricity

charges of both sign occur on the metals

(poles) to the same amount. The system
composed of the solution and the metals,

which is also called Voltaic element or cell, thus

has the power of separating the two kinds of

electricity. Now, it is remarkable that this

power is apparently inexhaustible, for if the

poles are connected by a wire, so that their

Fig. 81. charges flow around and neutralize each

other, then, as soon as the wire is again re-

moved, the poles are still always charged. Thus the element

continues to keep up the supply of electricity so long as the

wire connexion is maintained. Hence a continuous flow of

electricity must be taking place. How this is to be imagined

in detail depends on whether the one-fluid or the two-fluid theory

is supported. In the former case only one current is present,

in the latter two opposite currents, one of each fluid, flow.

Now, the electric current manifests its existence by showing
very definite effects. Above all it heats the connecting wire.

Everyone knows this fact from the metallic threads in our

electric glow-lamps. Thus the current continually produces

heat-energy. Whence does the Voltaic element derive the power
of producing electricity continually and hence thereby indirectly

generating heat ? According to the law of conservation of

energy, wherever one kind of energy appears during a process

another kind of energy must disappear to the same extent.

H
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The source of energy is the chemical process in the cell.

The one metal dissolves as long as the current flows, whereas
a constituent of the solution separates out on the other. Com-
plicated chemical processes may take place in the solution

itself. We have nothing to do with these but satisfy ourselves

with the fact that the Voltaic element is a means of generating

electricity in unlimited quantities and of producing considerable

electric currents.

But we shall now have have to consider the reverse process,

in which the electric current produces a chemical decomposition.

For example, if we allow the current between two undecompos-
able wire leads (electrodes), say of platinum, to flow through
slightly acidified water, the latter resolves into its components,
hydrogen and oxygen, the hydrogen coming off at the negative

electrode (cathode), the oxygen at the positive electrode

(anode). The quantitative laws of this process of " elec-

trolysis," discovered by Nicholson and Carlisle (1800), were
found by Faraday (1832). The far-reaching consequences

of Faraday's researches for the knowledge of the structure

of matter are well known ; it is not the consequences them-
selves that lead us to discuss these researches but the fact

that Faraday's laws furnished the means of measuring electric

currents accurately, and hence allowed the system of electro-

magnetic conceptions to be still further elaborated.

This experiment in electrolytic dissociation can be carried

out not only with a Voltaic current, but just as well with

a current discharge, which occurs when oppositely charged

metallic bodies are connected by a wire. Care must indeed

be taken that the quantities of electricity that take place in

the discharge are sufficiently great. We have apparatus for

storing electricity, so-called condensers, whose action depends
on the induction principle, and which give such powerful

discharges that measurable amounts are decomposed in the

electrolytic cell. The amount of the charge that flows through
the cell may be measured by the above discussed methods of

electrostatics. Now, Faraday discovered the law that twice

the charge produces twice the dissociation, three times the

charge three times the dissociation, in short, that the amount
m of dissociated substance (or of one of the products of dis-

sociation) is proportional to the quantity e of electricity that

has passed through the cell

:

Cm = e.

The constant C also depends on the nature of the substances

and of the chemical process.

A second law of Faraday regulates this dependence. It
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is known that chemical elements combine together in perfectly

definite proportions to form compounds. The quantity of

an element that combines with i grm. of the lightest element,

hydrogen, is called its equivalent weight. For example, in

water (H 20) 8 grms. of oxygen (O) are combined with i grm.

of hydrogen (H), hence oxygen has the equivalent weight 8.

Now Faraday's law states that the same quantity of electricity

that separates out i grm. of hydrogen is able to separate out

an equivalent weight of every other element, thus, for example,

8 grms. of oxygen.
Hence the constant C need only be known for hydrogen,

and then we get it for every other substance by dividing this

value by the equivalent weight of the substance. For we have
for I grm. of hydrogen

Cf . I = e

and for any other substance with the equivalent weight fi

C/jl = e.

By dividing these equations we get

C i . r Q~- = -. i.e. C = —

.

L9 p /x

Thus C = e is the exact quantity of electricity that separates

out i grm. of hydrogen. Its numerical value has been de-

termined by exact measurements and amounts in the C.G.S.

system to

C = 2 90 . io14 units of charge per gramme . . (48)

Now we may combine Faraday's two laws into the one
formula :

e = —m .... (49)

Thus electrolytic dissociation furnishes us with a very

convenient measurement of the quantity of electricity e that

has passed through the cell during a discharge. We need only

determine the mass m of a product of decomposition that has

the equivalent weight fx and then we get the desired quantity

of electricity out of equation (49). In this it is of course a

matter of indifference whether this electricity is obtained from
the discharge of charged conductors (condensers) or whether
it comes from a Voltaic cell. In the latter case the electricity

flows continuously with constant strength ; the quantity that

passes per unit of time through any cross-section of the con-

ducting circuit, and hence also through the decomposing cell,

is called the intensity of current or current strength. This may
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be measured simply by allowing the Voltaic current to flow

for a unit of time (i sec.) through the electrolytic cell and then

determining the mass m of a product of dissociation. Then
equation (49) again gives us the charge e, which is equal to the

current strength. If the current flows not for 1 sec. but for

/ sees., then the quantity of electricity e and the mass m of each

product of decomposition separated out is / times as great.

Hence the intensity of current J is

J-|-7?-7 • • • •
(50)

Its dimensions are

[j] - [t]
= [t^k] = %jm\

and its unit is

cm. x/grm. cm.

sec. 2

3. Resistance and Heat of Current

We must next occupy ourselves a little with the process

of conduction or flowing itself. It has been customary to

compare the electric current

with the flowing of water in a

conducting tube and to apply

the conceptions there valid to

the electrical process. If water

is to flow in a tube there must
be some driving force. If the

water be allowed to flow down
from a higher vessel through an

inclined tube to a lower vessel,

gravitation is the driving force

(Fig. 82). This is so much the

greater, the higher the upper

surface of the water is above the

lower. But the velocity of the current of water or its current

strength depends not only on the amount of the impulse given

by gravitation but also on the resistance that the water ex-

periences in the conducting tube. If this is long and narrow

the amount of water sent through per unit of time is less than

in the case of a short wide tube. The current strength J is

thus proportional to the difference of level V that drives the

water and inversely proportional to the resistance W. We set

Fig. 82.

J= *orJW = V (5i)



138 THE THEORY OF RELATIVITY

in which the unit of resistance chosen is that which allows the

current of strength i to flow when the difference of level is I.

G. S. Ohm (1826) applied precisely the same ideas to the

electric current. The difference of level that effects the flow

corresponds to the electric force. For a definite piece of wire

of length I we must set V = El, where E is the field strength,

which is regarded constant along the wire. For if the same

electric field acts over a greater length of wire, it furnishes

a stronger impulse to the flowing electricity. The force V
is also called the electromotive force (difference of potential or

level). It is moreover identical with the conception of electric

potential which we mentioned above (p. 132).

Since the current-strength J and the electric intensity of

field E, hence also the potential difference or electromotive

force V = El, are measurable quantities, the proportionality

between J and V expressed in Ohm's law may be tested experi-

mentally.

The resistance W depends on the material and the form

of the conducting wire ; the longer and thinner it is, the greater

is W. If / is the length of the wire and q the size of the cross-

section, then W is directly proportional to /, and inversely

proportional to q. We set

aW = - or W = L
. . . (52)

q aq

where the factor of proportionality a depends further only

on the material of the wire V and is called the conductivity.

If we substitute W from (52) and V = el in (51), we get

JW = J - = V = El.
qa

By cancelling / we get

1- = E or J = ctE.

But ^ denotes the current strength per unit cross-section.

q
This is called the current density and is denoted by i. We thus

have
i = oE . . . (53)

In this form Ohm's law is left with only one constant

peculiar to the conducting material, namely, the conductivity

a, but in no other way depending on the form of the conducting

body (wire).
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In the case of insulators a = O. But ideal insulators

do not exist. Very small traces of conductivity are always

present except in a complete vacuum. There is an unbroken

sequence known leading from bad conductors (such as porce-

lain, amber) over the so-called semi-conductors (such as water

and other electrolytes), to the metals, which have enormously

high conductivity.

We have already pointed out above that the current heats

the conducting wire. The quantitative law of this pheno-

menon was found by Joule (1841). It is clearly a special case

of the law of conservation of energy, in which electric energy

becomes transformed into heat. Joule's law states that the

heat developed per unit of time by the current J in traversing

the potential difference V is

Q = JV . . . . (54)

where Q is to be measured not in calories but in mechanical

units of work. We shall make no further use of this formula,

and state it here merely for the sake of completeness.

4. Electromagnetism

Up to that time electricity and magnetism had been re-

garded as two regions of phenomena that were similar in some

respects, but quite separate and self-dependent. A bridge

was eagerly sought between the two regions, but for a long time

without success. At last Oersted (1820) discovered that magnet

needles are deflected by Voltaic currents. In the very same

year Biot and Savart discovered the quantitative law of this

phenomenon, which Laplace formulated as an action at a dis-

tance. It is very important for us for the reason that in it

there occurred a constant, peculiar to electromagnetism and

of the nature of a velocity, which showed itself later to be

identical with the velocity of light.

Biot and Savart established that the current flowing in

a straight wire neither attracts nor repels a magnetic pole,

but strives to drive it round in a circle around the wire (Fig.

83), so that the positive pole moves in the sense of a right-

handed screw turned from below (contrary to the hands of

a watch) about the (positive) direction of the current. The

gravitative law can be brought into the simplest form by sup-

posing the conducting wire to be divided into a number

of short pieces of length I and writing down the effect of these

current-elements, from which the effect of the whole current

is obtained by summation. We shall do no more than state

the law of a current element for the special case in which
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the magnetic pole lies in the plane that passes through the

middle part of the element and is perpendicular to its direction

(Fig. 84). Then the force that acts on the magnet pole of unit

strength, i.e. the magnetic intensity of field H in this plane,

is perpendicular to the line connecting the pole with the mid-

point of the current-element, and is directly proportional to

the current intensity J and to its length /, and inversely pro-

portional to the square of the distance r :

cH I1

r 2 (55)

Outwardly this formula has again similarity with Newton's

law of attraction or with Coulomb's law of electrostatics and
magnetostatics, but the electromagnetic force has nevertheless

a totally different character. For it does not act in the direc-

tion of the connecting line but perpendicular to it. The three

y

Fig. 83. Fig. 84.

directions J, r, H are perpendicular to each other in pairs.

From this'we see that electrodynamic effects are intimately

connected with the structure of Euclidean space ; in a certain

sense they furnish us with a natural rectilinear co-ordinate

system.

The factor of proportionality c introduced in formula (55)

is completely determined since the distance r, the current-

strength J, and the magnetic field H are measurable quantities.

It clearly denotes the strength of that current which when it

flows through a piece of conductor of length 1 produces the

magnetic field 1 at unit distance. It is customary and often

convenient to choose in place of the unit of current that we
have introduced (namely, the quantity of static electricity

that flows through the cross-section per unit of time) and that

is called the electrostatic unit, this current of strength c in
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electrostatic measure as the unit of current ; it is then called

the electromagnetic unit of current. Its use brings with it the

advantage that the equation (55) assumes the simple form

H = 1? or J = •—-, whereby the measurement of the strength
r'
2

I

of a current is reduced to that of two lengths and of a magnetic

field. Most practical instruments for measuring currents

depend on the deflection of magnets by currents or the con-

verse, and hence give the current strength in electromagnetic

measure. To express this in terms of the electrostatic measure

of current first introduced the constant c must be known
;

for this, however, only one measurement is necessary.

Before we speak of the experimental determination of the

quantity c, we shall get an insight into its nature by means

of a simple dimensional consideration. According to (55)

it is defined by c = ^—.
Hr 2

Now the following dimensional formulae hold :

j=[t} »-[!-]

hence the dimensions of c become

But we know that the electric charge e and the magnetic

strength of pole p have the same dimensions because Coulomb's

law for electric and magnetic force is exactly the same. Hence

we get

w -&
that is, c has the dimensions of a velocity.

The first exact measurement of c was carried out by Weber

and Kohlrausch (1856). These experiments belong to the

most memorable achievements of physical precision measure-

ments, not only on account of their difficulty but also on account

of the far-reaching consequences of the result. For the value

obtained for c was 3.1010 cm. /sec, which is exactly identical with

the velocity of light.

This equality could not be accidental. Numerous thinkers,

above all Weber himself, the mathematicians Gauss and Rie-

mann, and the physicists Neumann, Kirchhoff, Clausius felt

the close relationship that the number c = 3.1010 cm./sec.

established between two great realms of science, and they sought
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to discover the bridge that necessarily led from electromagnetism

to optics. Riemann came very near to solving the problem,

but this was actually accomplished by Maxwell, after Faraday's

wonderful and ingenious method of experimenting had brought

to light new facts and new views. We shall next pursue this

development.

5. Faraday's Lines of Force

Faraday came from no learned academy ; his mind was not

burdened with traditional ideas and theories. His sensational

rise from a book-binder's apprentice to the world-famous

physicist of the Royal Society is well known. The world of

his ideas, which arose directly and exclusively from the abun-

dance of his experimental experiences, was just as free from

the conventional scheme as his life. We discussed above his

researches on electrolytic dissociation. His method of trying

all conceivable changes in the conditions of experiment led him

(1837) to insert a non-conductor like petroleum and turpentine

between the two metal plates (electrodes) of the electrolytic cell

in place of a conducting fluid (acid or solution of a salt). These

non-conductors did not dissociate, but they were not without

influence on the electrical process. For it is found that when
the two metal plates are charged by a definite Voltaic battery

with a definite potential difference, they take up totally different

charges according to the substance that happens to be between

them (Fig. 85). The non-conducting substance thus influences

the power of taking up electricity or the capacity of the system

of conductors composed of the two plates, which is called a

condenser.

The discovery impressed Faraday so much that from that

time onwards he gave up the usual idea that electrostatics

was based on the direct action of electric charges at a distance,

and developed a peculiar new interpretation of electric and

magnetic phenomena, which is to be called a theory of con-

tiguous action. What he learned from the experiment above

described was the fact that the charges on the two metal plates

do not simply act on each other through the intervening space,

but that this intervening space plays an essential part in the

action. From this he concluded that the action of this medium
is propagated from point to point, and is thus an action by

contact or a contiguous action.

We are familiar with the contiguous action of elastic forces

in deformed rigid bodies. Faraday, who always kept to em-

pirical facts, did indeed compare the electric contiguous action

in non-conductors with elastic tensions, but he took good care
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not to apply the laws of the latter to electrical phenomena.

He used the graphical picture of " lines of force " that run in

the direction of the electric intensity of field from the positive

charges through the insulator to the negative charges. In the

case of a plate-condenser the lines of force are straight lines

perpendicular to the planes of the plate (Fig. 86). Faraday

regards the lines of force as the true substratum of electric

events ; for him the}' are actually material configurations that

move about, deform themselves, and hereby bring about

electrical effects. For Faraday the charges play a quite

subordinate part, as the places at which the lines of force start

out or end. He was strengthened in this view by those experi-

ments which prove that in conductors the total electric charge

resides on the surface whilst the interior remains quite free.

To give a drastic proof of this he built a large cage fitted out

all round with metal, into which he entered with sensitive

Fig. 85. Fig. 86.

electrical measuring instruments. He then had the cage

very strongly charged, and found that in the interior not the

slightest influence of the charges was to be detected. Above

(V, 1, p. 130) we used just this fact to derive Coulomb's law

of action at a distance. But Faraday concluded from it that

the charge was not the primary element of electrical events,

and that it could not be imagined as a fluid which had the power

of exerting forces at a distance. Rather, the primary element

is the state of tension of the electric field in the non-conductors,

which is represented by the picture of the lines of force. The

conductors are in a certain sense holes in the electric field,

and the charges in them are only fictitious conceptions, in-

vented to explain the pressures and tensions arising through

the strains in the field as actions at a distance. Among the

non-conductors or dielectric substances there is also the vac it ion,

the ether, which we here again encounter in a new form.

This strange view of Faraday's at first found no favour among
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the physicists and mathematicians of his own time. The
view of action at a distance was maintained, and this was
possible even when the "dielectric" action of non-conductors

discovered by Faraday was taken into account. Coulomb's

law only needed to be altered a little ; to every non-conductor

there is assigned a peculiar constant €, its " dielectric constant,"

which is defined by the fact that the force acting between

two charges e lt e 2 embedded in the non-conductor is smaller

in the ratio i : e than that acting in vacuo :

K = le^ .... (56)
e r2

For a vacuum e = 1, for every other body € > 1

With this addition the phenomena of electrostatics could

actually all be explained even when the dielectric properties

of non-conductors were taken into account. We have already

mentioned above that electrostatics had formally long ago

passed over into a theory of pseudo-contiguous action, the so-

called theory of potential. This likewise easily succeeded in

assimilating the dielectric constant e. Nowadays we know that

this really already signified that the mathematical formulation

of Faraday's conception of lines of force had been obtained.

But as this method of potential was regarded only as a mathe-

matical artifice, the antithesis between the classical theory

ot action at a distance and Faraday's idea of contiguous action

still remained.

Faraday developed precisely similar views about magnetism.

He discovered that the forces between two magnet poles like-

wise depend on the medium that happens to lie between them,

and this again led him to the view that the magnetic forces,

just like the electric forces, are produced by a peculiar state

of tension in the intervening media. The lines of force served

him to represent these tensions. They can, as it were, be made
actually visible by scattering iron filings over a sheet of paper

and holding the latter closely over a magnet (Fig. 8j).

The theory of action at a distance leads to the formal

introduction of a constant characteristic of the substance,

the magnetic penetrability or permeability /x, and gives Coulomb's

law in the altered form :

K = I M? .... (57)
jjl r 2

Physicists have not, however, remained satisfied with this

formal addition, but have devised a molecular mechanism that

makes the magnetic and dielectric power of polarization in-
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telligible. We have already seen above that the properties

of magnets lead ns to regard their molecules themselves

small elementary magnets that are made to point in parallel

directions by the process of magnetization. It is assumed that

they retain this parallelism of themselves, say, through fric-

tional resistances. Now it may be assumed that in the case

of most bodies that do not occur as permanent magnets this

friction is wanting. The parallel position is then indeed pro-

duced by an external magnetic field, but will at once disappear

if the field is removed. Such a substance will then be a magnet
only so long as an external field is present. But it need not

even be assumed that the molecules are permanent magnets

that assume a parallel position. If each molecule contains

the two magnetic fluids, then they will separate under the

action of the field and the molecule will become a magnet of

..

r-^;>

Fig. 87.

itself. But this induced magnetism must have exactly the

action that the formal theory describes by introducing the per-

meability. Between the two magnet-poles (N, S) in such a

medium there are formed chains of molecular magnets whose
opposite poles everywhere compensate each other in the interior,

but end with opposite poles at N and S, and hence weaken the

actions of N and S (Fig. 88). (The converse effect, namely,
strengthening, also occurs, but we shall not enter into its inter-

pretation.)

Exactly the same as has just been illustrated for magnetism
may also be imagined for electricity. A dielectric, in this view,

is composed of molecules that are either electric dipoles of

themselves and assume a parallel position in an external

field or that become dipoles through the separation of the

positive and negative electricity under the action of the field.

Between two plates of a condenser (Fig. 89) chains of molecules

10
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again form whose charges compensate each other in the interior

but not on the plates. Through this a part of the charge
on the plates is itself neutralized, and a new charge has to

be imparted to the plates to charge them up to a definite

tension or potential. This explains how the polarizable

dielectric increases the receptivity or capacity of the condenser.
According to this idea of the theory of action at a distance

the effect of the dielectric is an indirect one. The field in the
vacuum is only an abstraction. It signifies the geometrical
distribution of the force that is exerted on an electric test-

body carrying a unit charge. But the field in the dielectric

is in a state of real physical change, the molecular displace-

ment of the two kinds of electricity.

Faraday's theory of contiguous action knows no such differ-

ence between the field in the ether and in insulating matter.

<& ^ ^
qOGGGB

N

C30Q

Fig. 88. Fig. 89.

Both are dielectrics. For the ether the dielectric constant

e=i, for other insulators e differs from 1. If the graphical

picture of electric displacement is correct for matter, it must
also hold for the ether. This idea plays a great part in the

theory of Maxwell, which is essentially nothing else than the

translation of Faraday's idea of lines of force into the exact

language of mathematics. Maxwell assumes that in the ether,

too, the genesis of an electric or a magnetic field is accompanied
by " displacements " of the fluids. It is not necessary for this

purpose to imagine the ether to have an atomic structure,

yet Maxwell's idea comes out most clearly if we imagine ether

molecules which become dipoles just like the material mole-

cules in the field. The field is not, however, the cause of the

polarization, but the displacement is the essence of the state

of tension which we call electric field. The chains of ether

molecules are the lines of force and the charges at the surface
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of the conductors are nothing more than the end-charges of these

chains. If there are material molecules present besides the
ether particles, the polarization becomes strengthened and the
charges at the ends become greater.

Are Faraday's and Maxwell's ideas or those of the theory
of action at a distance right ?

So long as we confine ourselves to electrostatic and mag-
netostatic phenomena, both are fully equivalent. For the
mathematical expression of Faraday's idea is what we have
called a theory of pseudo-contiguous action, because it does,

indeed, operate with differential equations but recognizes no
finite velocity of propagation of tensions. Faraday and
Maxwell, however, themselves disclosed those events which,
analogously to the inertial effects of mechanics, effect the delay
in the transference of an electromagnetic state from point to

point and hence bring about the finite velocity of propagation.
These events are the magnetic induction and the displace-

ment current.

6. Magnetic Induction

After Oersted had discovered that an absolute current

produces a magnetic field and Biot and Savart had formulated
this fact as an action at a distance, Ampere discovered (1820)
that two Voltaic currents exert forces on each other, and he
in turn succeeded in expressing the law underlying this pheno-
menon in the language of the theory of action at a distance.

This discovery had far-reaching consequences, for it made
it possible to reduce magnetism to a form of electricity. Ac-
cording to Ampere small closed currents are supposed to flow
in the molecules of magnetized bodies. He showed that such
currents behaved exactly like elementary magnets. This idea
has stood the test of examination ; from his time onwards
magnetic fluids became superfluous. Only electricity was left,

which when at rest produced the electrostatic field, and when
flowing the magnetic field besides. Ampere's discovery may
also be expressed thus : According to Oersted a wire in which
the current Jx is flowing produces a magnetic field in its neigh-
bourhood . A second wire in which the current J 2 is flowing then
experiences force effects in this magnetic field. Thus this field

clearly tends to deflect or accelerate flowing electricity.

Hence the following question suggests itself. Can the mag-
netic field also set electricity that is at rest into motion ?

Can it produce or " induce " a current in the second wire
which is initially without a current ?

Faraday found the answer to this question (1831). He
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discovered that a static magnetic field has not the power of

producing a current, but that one arises as soon as the magnetic

field is changed. For example, when he suddenly approached

a magnet to a closed conducting wire, a current flowed in the

wire so long as the motion lasted ; or when he produced the

magnetic field by means of a primary current a short impulse

of current occurred in the secondary wire whenever the first

current was started or stopped.

From this it is clear that the induced electric force depends

on the velocity of alteration of the magnetic field in time.

Faraday succeeded in formulating the quantitative law of

this phenomenon with the help of his lines of force. We shall

give it such a form that its analogy with Biot and Savart's

law comes out clearly. We imagine a bundle of parallel lines

of magnetic force that constitute a magnetic field H. We
suppose a circular conducting wire placed around this sheath

(Fig. 90). If the intensity of field H changes in the small

interval of time t by the amount h we call - its velocity of
t

change or the change in the number of lines of force. If we
represent the lines of force as chains of magnetic dipoles (which,

however, according to Ampere, is not allowed), then in the change

of H a displacement of the magnetic quantities will occur in

every ether molecule, or a " magnetic displacement current " will

occur whose current strength per unit of area or current density

is given by j = -. If the field H is not in the ether but in a

substance of permeability /x, the density of the magnetic

displacement current is j = /lc— . Thus the magnetic current
t

J = qj = qp— passes through the cross-section q, that is,

t

through the surface of the circle formed by the conducting

wire.

Now, according to Faraday, this magnetic current produces

all around it an electric field E, which encircles the magnetic

current exactly as the magnetic field H encircles the electric

current in Oersted's experiment, only in the reverse direction.

It is this electric field E that drives the induced current around

in the conducting wire ; it is also present even if there is no

conducting wire in which the current can form.

We see that the magnetic induction of Faraday is a perfect

parallel to the electromagnetic discovery of Oersted. The

quantitative law, too, is the same. According to Biot and

Savart the magnetic field H produced by a current-element
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of length / and of strength J (Cf. Fig. 84, p. 140) in the middle

plane perpendicular to the element is perpendicular to the

connecting line r and to the current direction, and has the

value H = JL [Formula (55), p. 140].
cr*

Here exactly the same holds when electric and magnetic

quantities are exchanged and when the sense of rotation is

reversed (Fig. 91). The induced electric intensity of field

in the central plane is given by E = J-_«

In it the same constant c, the ratio of the electromagnetic

to the electrostatic unit of current occurs, which was found by
Weber and Kohlrausch to be equal to the velocity of light.

It can easily be seen from considerations of energy that this

must be so.

A great number of the physical and technical applications

H
AAA

CJ>

Fig. 90. Fig. 91.

of electricity and magnetism depend on the law of induction.

The transformer, the induction coil, the dynamo, and innumer-

able other apparatus and machines are appliances for inducing

electric currents by means of changing magnetic fields. But
however interesting these things may be, they do not lie on our

road of investigation, the final goal of which is to examine

the relationship of the ether with the space problem. Hence
we turn our attention at once to the representation of Max-
well's theory, whose object was to combine all known electro-

magnetic phenomena to one uniform theory of contiguous

action.

7. Maxwell's Theory of Action by Contact

We have already stated above that soon after Coulomb's

law had been set up electrostatics and magnetostatics were

brought into the form of a theory of pseudo-contiguous action.

Maxwell now undertook to fuse this theory with Faraday's
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ideas, and to elaborate it so that it also included the newly
discovered phenomena of dielectric and magnetic polarization,

of electromagnetism, and magnetic induction.

Maxwell took as the starting-point of his theory the idea

already mentioned above that an electric field E is always ac-

companied by an electric displacement cE not only in matter,

for which e is greater than i, but also in the ether, where 6 = 1.

We explained above how the displacement can be visualised as

the separation and flowing of electric fluids in the molecules.

The first fact that Maxwell established was that in the light

of this idea of displacement Coulomb's law was essentially

nothing more than an inference from the law of indestructi-

bility of electricity.

Let us imagine a metallic sphere embedded in a medium
whose dielectric constant is e (Fig. 92). In this sphere we
construct a concentric sphere of radius 1 and another of radius

r. Now, let the metal sphere

be charged with an amount of

electricity -f e. Then, according

to Maxwell, a displacement of the

positive electricity outwards must
occur in every molecule in order

that the amount of electricity con-

tained in any arbitrary volume re-

main constant. And the amount
of electricity transported across

the surface of a sphere of radius

1 is to be measured by cE ac-

cording to Maxwell. The same
amount of electricity will pass through every concentric sphere

since otherwise an accumulation of charges would occur in the

dielectric. And since the surfaces of two spheres are in the

ratio of the squares of the radii, an amount of electricity r2eE
passes through the sphere of radius r.

Now this must also be exactly equal to the charge e of the

metal sphere at which the displacement comes to an end

;

thus we have r2eE = e, or

E == ±,

Fig. 92.

But this is Coulomb's law in the generalized form (56),

(p. 144) ; E is the force exerted by the charge e on unit charge

at the distance r.

If we are dealing, not with spheres, but with arbitrary

charged bodies, Maxwell's fundamental idea still remains

the same : the field is determined by the condition that the
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displacement cE of the electricity outwards in the delectric

or the " divergence " of cE (div. cE) across any arbitrarily

small closed surface just compensates the charges that occur

in the interior of the surface. By denoting the charge per

unit of volume or the density of charge of the electricity by p,
we write symbolically

div.eE=p .... (58)

This is to serve us only as a mnemonic for the law formu-

lated above. But Maxwell showed that it is possible to

derive a definite differential expression for the conception of

divergence. Hence to mathematicians formula (58) signifies

a differential equation, a law of contiguous action.

Exactly the same considerations apply to magnetism, but
with one important difference : according to Ampere no real

magnets exist, no magnetic quantities, but only electromagnets.

The magnetic field is always to be produced by electric currents,

whether they be conduction currents in wires or molecular

currents in the molecules. From this it follows that the

magnetic lines of force never end, that is, they either merge
into themselves again or stretch to infinity. This is so in the

case of an electromagnet, a coil through which a current is

flowing (Fig. 93) ; the magnetic lines of force run rectilinearly

through the interior of the coil, partly joining outside and
partly going off to infinity. If we consider the coil enclosed

between two planes A and B, then just as much " mag-
netic displacement " /xH will enter through A as goes out

through B. As, by the way, the displacement picture is

unsuitable in this case, we usually say magnetic induction

instead of displacement. Hence just as many lines of force

will go out through any closed surface as enter into it, or the

total divergence of magnetism through an arbitrary closed

surface is nil

:

div./xH^O .... (59)

This is Maxwell's formula of contiguous action for magnet-
ism.

We now come to Biot and Savart's law of electromagnetism.

To convert this into a law of contiguous action we suppose the

electric current not to be flowing in a thin wire, but to be

distributed uniformly with the density i = J over a circular

cross section q, and we then ask what is the magnetic intensity

of field H at the edge of the cross section (Fig. 94). But by
Biot and Savart's law this is everywhere in the direction of

the tangent to the circle and, according to formula (55), (p. 140),
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it has the value H = J-, where r is the radius of the circle, and
cr2

I the length of the current element. Now the cross section,

being circular, is ttt
2
, hence we may write formula (55) thus:

_ = J_ = i = i, and this holds for every cross section,

irl ttt
2

q
however small, and for every length, however short. On the

left, then, there is a certain differential quantity of the magnetic

field, and the law states that this quantity is proportional to

the current-density. We cannot here carry out the mathe-

matical investigation as to how this differential quantity is

formed. It has to take into account not only the intensity

but also the direction of the magnetic field, and since this

encircles or curls round the direction of the current, the dif-

Fig. 93.

o
Fig. 94.

ferential operation is called "curl" of the field H (written,

curl H). Accordingly we write symbolically

c curl H = i . . . . (60)

and again regard this formula only as a mnemonic for the

relationships between the intensity and direction of the mag-

netic field H and the intensity of current i. To the mathe-

matician, however, it is a differential equation of the same kind

as the law (58).

Now exactly the same holds for magnetic induction, but

we shall write the opposite sign to indicate the opposite sense

of rotation :

c curl E = — j . . . (61)

The four symbolic formulae (58) to (61) show wonderful sym-

metry. Formal agreement of this kind is by no means a matter



LAWS OF ELECTRODYNAMICS 153

of indifference. It exhibits the underlying simplicity of pheno-

mena in nature, which remains hidden from direct perception

owing to the limitations of our senses, and reveals itself only

to our analytical faculty.

8. The Displacement Current

But this symmetry is not perfect ; for i denotes the density

of the electric current of conduction, that is, a transportation

or convection of electric currents along finite distances, whereas

; is the time change of the magnetic field, and can be interpreted

as a displacement current only on the basis of the very artificial

hypothesis of ether dipoles.

Now Maxwell remarked (1864) that what sufficed for the

magnetic field should hold no less for the electric field. The

idea of dipoles compels us also to assume a dielectric displace-

ment current, which flows

in non-conductors when the

electric field E varies. If e

is the change of E in the

time t, then the density of

the dielectric displacement

current must be set equal

This Maxwellian theory,

which seems almost trivial

in our description, is of the

greatest importance, for it

became the key to the elec-

tromagnetic theory of light.

We shall make its meaning clear by considering a concrete example.

Suppose the poles of a galvanic cell to be connected with the plates

of a condenser by means of two wires, and let there be a key in

one of the two connexions (Fig. 95). If the latter is depressed,

a short current flows which charges up the two plates of the

condenser ; between them an electric field E is thereby pro-

duced. Before Maxwell's time, this phenomenon was regarded

as an " open circuit." Maxwell, however, asserts that during

the growth of the field E a displacement current flows between

the condenser plates, and the current becomes added to the

conduction current so that the circuit becomes complete. So

soon as the condenser plates are charged, both currents, the

conduction and the displacement current, cease.

Now, the essential point is that Maxwell affirms that, just

Fig. 95.
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like the conduction current, the displacement current also pro-

duces a magnetic field according to Biot and Savart's law.

That this is actually so has not only been proved by the success

of Maxwell's theory in predicting numerous phenomena, but

was also confirmed directly later by experiment.

In a semi-conductor a conduction and a displacement

current will be present simultaneously. For the former,

Ohm's law, » = <rE, holds; (53) (p. 138), for the latter,

Maxwell's law, i = — . If both are present simultaneously we
t

thus have i = e-+ aE. There is no conduction current

for magnetism, we always have j = fx- in that case. If we
t

insert this in our symbolic equations (58) to (61), we get

:

(a) div. eE = p (c) c curl H — e- = <tE

h &)
(b) div. /xH = O (d) c curl E + ^ = O

These are Maxwell's laws, which have remained the founda-

tion of all electromagnetic and optical theories up to our own
time. To the mathematician they are perfectly definite

differential equations. To us they are mnemonics which state :

(a) Wherever an electric charge occurs, an electric field

arises of such a kind that in every volume the charge

is exactly compensated by the displacement.

(b) Through every closed surface just as much magnetic

displacement passes outwards as comes inwards.

(c) Every electric current, be it a conduction or a displace-

ment current is surrounded by a magnetic field.

(d) A magnetic displacement current is surrounded by an

electric field in the reverse sense.

Maxwell's " field equations," as they are called, constitute a

true theory of contiguous action or action by contact, for, as we
shall presently see, they give a finite velocity of propagation

for electromagnetic forces.

At the time when they were set up, however, faith in direct

action at a distance, according to the model of Newtonian

attraction, was still so deeply rooted that a considerable

interval elapsed before they were accepted. For the theory

of action at a distance had also succeeded in mastering the

phenomena of induction by means of formulae. This was done

by assuming that moving charges exert in addition to the

Coulomb attraction also the special actions at a distance
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that depend on the amount and direction of the velocity. The
first hypotheses of this kind were due to Neumann (1845).

A particularly famous law is that which was set up by Wilhelm

Weber (1846) ; similar formulae were given by Riemann

(1858), and Clausius (1877). All these theories have in common
the idea that all electrical and magnetic actions are to be

explained by means of forces between elementary electrical

charges or, as we say nowadays, " electrons." They were thus

precursors of the present-day theory of electrons, with an

essential factor omitted, however, namely, the finite velocity

of propagation of the forces. These theories of electrodynamics,

based on action at a distance, gave a complete explanation of the

motive forces and induction currents that occur in the case

of closed conduction currents. But in the case of " open
"

circuits, that is, condenser charges and discharges, they were

doomed to failure, for here the displacement currents come
into play, of which the theories of action at a distance know
nothing. It is to Helmholtz that we are indebted for appro-

priate experimental devices, allowing us to decide between

the theories of action at a distance and action by contact.

He succeeded in carrying the experiment out with a certain

measure of success, and he himself became one of the most

zealous pioneers of Maxwell's theory. But it was his pupil,

Hertz, who secured the victory for Maxwell's theory by dis-

covering electromagnetic waves.

9. The Electromagnetic Theory of Light

We have already mentioned above (V, 4, p. 141) the im-

pression which the coincidence, established by Weber and

Kohlrausch, of the electromagnetic constant c with the velocity

of light made upon the physicists of the day. And there were

still further indications that there is an intimate relation be-

tween light and electromagnetic phenomena. This was shown

most strikingly by Faraday's discovery (1834) tnat a polarized

ray of light which passes by a magnetized body is influenced

by it. When the beam is parallel to the magnetic lines of

force its plane of polarization becomes turned. Faraday

himself concluded from this that the luminiferous ether and

the carrier of electromagnetic lines of force must be identical.

Although his mathematical powers were not sufficient to allow

him to convert his ideas into quantitative laws and formulae,

his conceptions were very abstract and were in no wise confined

within the narrow limits of the trivial view which accepted

as known what was familiar. Faraday's ether was no elastic

medium. It derived its properties, not by analog}', from the
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apparently known material world, but from exact experiments

and from the consequent relationships that were really known.

Maxwell continued Faraday's work. His talents were akin to

those of Faraday, but they were supplemented by a complete

mastery of the mathematical means available at the time.

We shall now make clear to ourselves that the propagation

of electromagnetic forces with finite velocity arises out of

Maxwell's field laws (62). In doing so we shall confine ourselves

to events that occur in vacuo or in the ether. The latter has

no conductivity, that is, a = 0, and no true charges, that is,

p = ; and its dielectric constant and permeability are equal

to 1, that is, € = 1, ft s= 1. The first two field equations (62)

then assert that

div. E = div. H = . . . (63)

or that all lines of force are either closed or run off to infinity.

Even if only to obtain a rough picture of the processes we shall

imagine to ourselves individual closed lines of force.

The other two field equations are then

- = c curl H - = — c curl E . . (64)
t t

We now assume that, somewhere in a limited space, there is an
electric field E which alters by the amount e in the small interval

of time t ; then - is its rate of change. According to the first
t

equation, a magnetic field immediately coils itself around this

electric field, and its rate of change is also proportional to

-. The magnetic field, too, will alter in time, say, by h, during
t

a successive small interval, t. Again, in accordance with the

second equation, its rate of change - immediately induces an
t

interwoven electric field. In the following interval of time

the latter again induces an encircling magnetic field, according

to the first equation, and so this chain-like process continues

with finite velocity (Fig. 96).

This is, of course, only a very rough description of the
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process, which actually propagates itself in all directions con-

tinuously. Later we shall sketch a better picture.

What interests us particularly here is the following. We
know from mechanics that the finite velocity of propagation

of elastic waves is due to the delays that occur as a result of

the mass inertia which acts when the forces are transmitted

in the body from point to point. The mass inertia, however,

is determined by the acceleration, and this is the rate of change
1!)

of the velocity ; b = — , where w is the change of the velocity
t

v = * in the small time t. Thus the retardation is clearly

due to the double differentiation.

Now, the case is exactly the same here. The rate of change

of the electric field - first determines the magnetic field H, and
t

then the rate of change - of the latter determines the electric

field E at a neighbouring point. The advance of the electric

field alone from point to point is thus conditioned by two differ-

entiations with respect to time, that is, by an expression which

is formed quite analogously to acceleration. It is due to this

alone that electromagnetic waves exist. If one of the two partial

effects were to occur without loss of time, no propagation of the

electric force in the form of waves would occur. This helps us to

realize the importance of Maxwell's displacement current, for it

is just this rate of change - of the electric field.
t

We shall now give a picture of the propagation of an electro-

magnetic wave which will be truer to the actual process. Let

two metal spheres have strong but opposite equal charges

+ e and — e, so that a strong electric field exists between them.

Next let a spark occur between the spheres. The charges then

neutralize each other, the field collapses at a great rate of change

p
. The figure shows how the magnetic and electric lines of force

z>

then encircle each other alternately (Fig. 97). In our diagram the

magnetic lines of force are drawn only in the medium plane

between the spheres, the electric lines of force only in the plane

of the paper, perpendicular to the medium plane. The whole

figure is, of course, spherically symmetrical about the line con-

necting the centres of spheres. Each successive loop of the lines

of force is weaker than its immediate predecessor, because it lies

further outwards and has a bigger circumference. Accordingly,

the inner part of a loop of electric force does not quite counter-
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balance the outer part of its predecessor, particularly as it enters

into action a little late.

If we pursue the process along a straight line which is

perpendicular to the line connecting the centres of the spheres,

say along the #-axis, then we see that the electric and magnetic

forces are always perpendicular to this axis ; moreover, they are

perpendicular to each other. This is true of any direction

of propagation. Thus, the electromagnetic wave is rigorously

transversal. Furthermore, it is polarized, but we still have the

choice of regarding either the electric or the magnetic intensity

of field as the determining factor of the vibration.

It is beyond our scope here to prove that the velocity of

propagation is exactly equal to the constant c that occurs in

the formulae. Yet it is in itself probable, for we know that c

has the dimensions of a

velocity. Further, since

according to Weber and
Kohlrausch the value of

c is equal to that of the

velocity of light, c, Max-
well was able to conclude

that light waves are nothing

other than electromagnetic

waves.

One of the inferences

Fig. 97. which Maxwell drew was
soon confirmed experi-

mentally to a certain extent, for he calculated the velocity of

light cx in an insulator which was not appreciably magnetizable

(/* = 1, ex = o). This velocity can then depend, besides on c, only
on the dielectric constant e ; for when p = 1 and a = this die-

lectric constant is the only constant that occurs in the formulae (62)

.

C c
Maxwell found that c

x
= —7=. This leads to the value n = — =

+Je for the refractive index.

Thus it should be possible to determine the refrangibility of

light from the dielectric constant as given by purely electrical

measurements. For some gases, for example, hydrogen, carbon

dioxide, air, this is actually the case, as was shown by L.

Boltzmann. For other substances Maxwell's relation n = ^e
is not correct, but in all these cases the refractive index is not

constant but depends on the colour (frequency) of the light.

This shows that dispersion of the light introduces a disturbing

effect. We shall return to this later and shall deal with it from
the point of view of the theory of electrons. At any rate, it is

clear that the dielectric constant as determined statically agrees
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more closely with the square of the refractive index the slower

the vibrations or the longer the waves of the light that is used
;

infinitely slow waves are, of course, identical with a stationary

state. Comparatively recent researches into the region of longest

heat and light rays (in the infra-red) by Rubens have completely

confirmed Maxwell's formula.

Concerning the more geometrical laws of optics, reflection, re-

fraction, double refraction, and polarization in crystals, and so

forth, the electromagnetic theory of light causes to vanish all

the difficulties that were quite insuperable for the theories of

the elastic ether. In the latter, the greatest obstacle was the

existence of longitudinal waves, which appeared when light

crossed the boundary between two media, and which could be

removed only by making quite improbable hypotheses about

the constitution of the ether. The electromagnetic waves are

always strictly transversal. Thus this difficulty vanishes. Max-

well's theory is almost identical formally with the ether theory

of MacCullagh, as we mentioned above (IV, 6, p. 101) ;
without

repeating the calculations we can take over most of his deduc-

tions.

We cannot here enter further into the later development of

electrodynamics. The bond between light and electromag-

netism became ever closer. New phenomena were continually

being discovered, which showed that electric and magnetic

fields exerted an influence on light. Everything subjected

itself to Maxwell's laws, the certainty of which continued to

grow.

But the striking proof of the oneness of optics and electro-

dynamics was given by Heinrich Hertz (1888) when he showed

that the velocity of propagation of electromagnetic force was

finite, and when he actually produced electromagnetic waves.

He made sparks jump across the gaps between two charged

spheres, and by this means generated waves such as are re-

presented by our diagram (Fig. 97). When they encountered

a circular wire with a small gap in its circuit they called up

in it currents which were manifested by means of small sparks

at the gap. Hertz succeeded in reflecting these waves and in

making them interfere. This enabled him to measure their

wave-length and to calculate their velocity, which came out

exactly equal to c, that of light. This directly confirmed

Maxwell's hypothesis. Nowadays the Hertzian waves of the

great wireless stations travel over the earth without cessation,

and bear their tribute to the two great investigators, Maxwell

and Hertz, of whom the one predicted their discovery and the

other actually produced them.
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io. The Electromagnetic Ether

From this time onwards there was only one ether, which was

the carrier of all electric, magnetic, and optical phenomena.

We know its laws, Maxwell's field equations, but we know

little of its constitution. Of what do the electromagnetic

fields actually consist, and what is it that executes vibrations

in the waves of light ?

We recall to mind that Maxwell took the conception of

displacement as the foundation of his argument, and we

interpreted this visually as meaning that in the smallest parts

or molecules of the ether, just as in the molecules of matter,

an actual displacement and a separation of the electric (or

magnetic) fluid occurs. So far as this idea concerns the

process of electric polarization of matter, it is well founded;

and it is also adopted in the newer modification of Maxwell's

theory, the theory of electrons, for numerous experiments

have rendered certain that matter is constituted molecularly,

and that every molecule carries displaceable charges. But

this is by no means the case for the free ether; here Maxwell's

idea of displacement is purely hypothetical, and its only value

is that it visualizes the abstract laws of the field.

These laws state that with every change of displacement in

time there is associated an electromagnetic field of force which

arises. Can we form a mechanical picture of this relationship ?

Maxwell himself indicated mechanical models for the con-

stitution of the ether, and applied them with success at that

time. Lord Kelvin was particularly inventive in this direction,

and strove unceasingly to comprehend electromagnetic phenom-

ena as actions of concealed mechanical motions and forces.

The rotational character of the relationship between electric

currents and magnetic fields, and its reciprocal character sug-

gests to us to regard the electric state of the ether as a linear

displacement, the magnetic state as a rotation about an axis, or

conversely.

In this way we arrive at ideas that are related to MacCullagh's

ether theory. According to this the ether was not to generate

elastic resistances against distortions in the ordinary sense, but

resistances against the absolute rotation of its elements of volume.

It would take us much too far to count up the numerous and

sometimes very fantastic hypotheses that have been put forward

about the constitution of the ether.

If we were to accept them literally, the ether would be a

monstrous mechanism of invisible toothed wheels, gyroscopes

and gears intergripping in the most complicated fashion, and of

all this confused mass nothing would be observable but a few
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relatively simple forces which would present themselves as an
electromagnetic field.

There are also less cumbersome, and, in some cases, ingenious

theories in which the ether is a fluid whose rate of flow represents,

say, the electric field, and whose vortices represent the magnetic
field. Bjerknes has sketched a theory in which the electric

charges are imagined as pulsating spheres in the ether fluid, and
he has shown that such spheres exert forces on each other which
exhibit considerable similarity with the electromagnetic forces.

If we next inquire into the meaning and value of such

theories, we must grant them the credit of having suggested,

even if rather seldom, new experiments, and of having led to

the discovery of new phenomena. More often, it is true, elaborate

and laborious experimental researches have been instituted to

decide between two ether theories, both of which were equally

improbable and fantastic. In this way much effort has been
wasted without reason. Even nowadays there are some people

who regard the mechanical explanation of the electromagnetic

ether as a postulate of reason. Such theories still continue to

crop up, and, naturally, they become more and more abstruse

since the abundance of the facts to be explained grows, and
hence the difficulty of the task increases without cessation.

Heinrich Hertz consciously turned his mind away from all

mechanistic speculations. We give the substance of his own
words :

" The interior of all bodies, including the free ether, can,

from an initial state of rest, experience some disturbances which
we call electrical and others which we call magnetic. We do
not know the nature of these changes of state, but only the

phenomena which their presence calls up." This definite re-

nunciation of a mechanical explanation is of great importance from
the point of view of method. It opens up the avenue for the

great advances which have been made by Einstein's researches.

The mechanical properties of solid and fluid bodies are known
to us from experience, but this experience concerns only their

behaviour in a crude sense. It may be, and this has been
supported by more recent molecular researches, that these visible,

crude properties are a sort of appearance, an illusion, due to

our clumsy methods of observation, whereas the actual occur-

rences between the smallest elements of structure, the atoms,
molecules, and electrons, take place according to quite different

laws. It is, therefore, a naive prejudice that every continuous
medium, like the ether, must behave like the apparently continu-

ous fluids and solids of this world, which is accessible to us through
our coarse senses. The properties of the ether must rather be
ascertained by studying the events that occur in it independently
of all other experiences. The result of these researches may be

ii
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expressed as follows. The state of the ether may be described

by two directed magnitudes, which bear the names electric and

magnetic strength of field, E and H, and the changes of which in

space and time are connected by Maxwell's equations. Under
certain circumstances, mechanical, thermal, and chemical actions

on matter, which are capable of being observed, are conditioned

by the state of the ether.

Everything that goes beyond these assertions is superfluous

hypothesis and mere fancy. It may be objected that such an

abstract view undermines the inventive power of the investigator,

which is stimulated by visual pictures and analogies, but Hertz'

own example contradicts this opinion, for rarely has a physicist

been possessed of such wonderful ingenuity in experiment,

although as a theorist he recognized only pure abstraction as

valid.

n. Hertz' Theory of Moving Bodies

A more important question than the pseudo-problem of the

mechanical interpretation of ether events is that concerning the

influence of the motions of bodies, among which must be counted,

besides matter, the ether, on electromagnetic phenomena. This

brings us back from a more general standpoint to the investi-

gations which we made earlier (IV, 7, p. 102) into the optics of

moving bodies. Optics is now a part of electrodynamics, and

the luminiferous ether is identical with the electromagnetic ether.

All the inferences that we made earlier from the optical observa-

tions with regard to the behaviour of the luminiferous ether

must retain their validity, since they are obviously quite in-

dependent of the mechanism of light vibrations ; for our in-

vestigation concerned only the geometrical characteristics of a

light wave, namely, frequency (Doppler effect), velocity (convec-

tion), and direction of propagation (aberration).

We have seen that up to the time when the electromagnetic

theory of light was developed only quantities of the first order

in /3 = -were accessible to measurement. And the result of these
c

observations could briefly be expressed thus as the " optical

principle of relativity " : optical events depend only on the

relative motions of the involved material bodies that emit,

transmit, or receive the light. In a system of reference moving
with translation all inner optical events occur just as if the ether

were at rest.

Two theories were proposed to account for this fact. That

of Stokes assumed that the ether inside matter was completely

carried along by the latter ; the second, that of Fresnel, on the
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other hand, was satisfied by supposing only a partial convection,

the amount of which could be derived from experiments. We
have seen that Stokes' theory, when carried to its logical con-

clusion, became involved in difficulties, but that Fresnel's re-

presented all the phenomena satisfactorily.

In the electromagnetic theory exactly the same two stand-

points are possible, either complete convection, as advocated by

Stokes, or the partial convection of Fresnel. The question is

whether purely electromagnetic observations will allow us to

come to a decision about these two hypotheses.

Hertz was the first to apply the hypothesis of complete

convection to Maxwell's field equations. In doing so, he was

fully conscious that such a procedure could be only provisional,

because the application to optical events would lead to the

same difficulties as those which brought Stokes' theory to

grief. But the simplicity of a

theory which required no dis-

tinction to be made between the

motion of ether and of matter

led him to develop it extensively

and to discuss it. This brought

to light that the induction

phenomena in moving conductors,

which are by far the most im-

portant for experimental physics

and technical science, are cor-

rectly represented by Hertz'

theory. Disagreements with

experimental results occur only

later in finer experiments in which the displacements in non-

conductors play a part. We shall investigate all possibilities in

succession.

i. Moving conductors

—

(a) in the electrical field
;

(b) in the magnetic field.

2 . .Moving insulators— (a) in the electrical field
;

(b) in the magnetic field.

(la) A conductor acquires surface charges in an electric

field. If it is moved, it carries them along with itself. But
moving charges must be equivalent to a current, and hence

must produce an enveloping magnetic field according to Biot

and Savart's law. To picture this to ourselves we imagine a

plate condenser whose plates are parallel to the xz-plsne (Fig.

98). Let them be oppositely charged and let them have an
amount of electricity e on each unit area of the plate. Now, let

one plate be moved with respect to the ether in the direction

Fig. 98.
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of the *-axis, with the velocity v. Then a convection current

arises. The moving plate is displaced in the unit of time by

a length v. If its cross section perpendicular to the #-axis is

q, then an amount of electricity eqv passes through a plane

that is parallel to the jyz-plane, hence a current of the density

ev flows. This must exert exactly the same magnetic action as

a conduction current of density * = ev, flowing through the

plate when it is at rest.

This was confirmed experimentally in Helmholtz' laboratory

by H. A. Rowland (1875), and later, more accurately, by

A. Eichenwald. Instead of the plate moving rectilinearly, a

rotating metal disc was used.

(lb) When conductors are moved about in a magnetic

field, electric fields arise in them, and hence currents are

produced. This is the phenomenon of induction by motion,

already discovered by Faraday and investigated quantitatively

77

Fig. 99. Fig. 100.

by him. The simplest case is this. Let the magnetic field

H produced, say, by a horse-shoe magnet, be parallel to the

z-axis (Fig. 99). lit there be a straight piece of wire of unit

length parallel to the ^-axis, and let this be moved with the

velocity v in the direction of the #-axis. Hertz' theory then

tells us that an electric field parallel to the negative direction

of the 2-axis is induced in this wire. If the wire is now made

part of a closed circuit by sliding it on the two opposite arms of

a U-shaped piece of wire, but so that the U takes no part

in the motion, as is indicated in the Fig., then an induction

current flows in the wire. This is given most simply by stating

Faraday's law of induction thus: the current induced in a

wire which forms part of a closed circuit is proportional to the

change of the number of lines of force per second or of the

magnetic displacement /xH which is enclosed by the wire.

Through the motion of the above wire this number clearly
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increases by /xHv per second. Hence the induced electric in-

tensity of field is equal to /iH - .

This law is the basis of all machines and apparatus of

physics and electro-technical science in which energy of motion

is transformed by induction into electromagnetic energy ; these

include, for example, the telephone and dynamo machines of

every kind. Hence the law may be regarded as having been

confirmed by countless experiments.

(2a) We suppose the motion of a non-conductor in an electric

field to be realized thus : let a movable disc composed of

the substance of the non-conductor be placed between the

two plates of the condenser of Fig. 98 (see Fig. 100). If the

condenser is now charged, an electric field E arises in the disc,

and a displacement cE is induced which is perpendicular to

the plane of the plates, that is, parallel to the ^-direction.

This causes the two boundary faces of the insulating disc to

be charged equally and oppositely to the metal plates facing

them, respectively. Concerning the amount of this charge we
know the following. On page 150 we saw that, according to

Maxwell's view, Coulomb's law gives a relation between the

amount of the displacement around a charged sphere, and its

charge £—namely, for a sphere of radius r we have

E = —- or eE = —

.

er2 r2

But this sphere has the surface 477T2
, hence the charge per

unit of surface is

e _ eE

47tt2 477'

If we apply this to the case of the condenser, the surface

density on the bounding planes of the isolating plate will be

just as great as that on the metal plates, and it will be connected

with the electrical field by

e = —
477

If the insulating layer is now moved in the direction of the

#-axis with the velocity v, then, according to Hertz, the ether

in the layer will be carried along completely. Hence, also,

eF
the field E and the charges e =— produced bv it on the

477

bounding planes will be carried along.

Therefore the moving charge of a bounding surface again
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eE
represents a current of density —v , and must generate, according

to Biot and Savart's law, a magnetic field.

W. C. Rontgen proved experimentally (1885) that this was
the case, but the deflection of the magnet-needle that he ob-

served was much smaller than it should have been from Hertz'

theory. According to his measurements, it is as if not the

whole ether is carried along by the disc, but only a part. The
other part remains at rest. If the disc were to consist of pure

ether, then we should have 6=1, and the charge produced

would equal — . Rontgen's experiments, however, show that

only the excess of the charge over this amount, that is

eE E E
- — — = — (e — 1) participates in the motion of the matter.

AfTT AfTT /\TT

We shall interpret this result simply later. Here we merely

establish that, as was to be expected according to the well-

known facts of optics, Hertz' theory of complete convection

also fails to explain purely electromagnetic phenomena.
Eichenwald (in 1903) confirmed Rontgen's result very strik-

ingly by allowing the charged metal plates to take part in the

motion. These give a convection current of the amount ev

;

according to Hertz this insulating layer ought, on account of

the opposite and equal charges, exactly to compensate this

current. But Eichenwald found that this was not the case.

Rather, he obtained a current which was entirely independent

of the material of the insulator. This is exactly what is to

be expected according to Rontgen's results of partial convec-

(cE F \— — — )v,

477 477/

of which the first member is compensated by the convection

current ev, and so we are left with the current —v, which is

4"7T

independent of the dielectric constant e.

(26) We imagine a magnetic field parallel to the 2-axis,

produced, say, by a horse-shoe magnet, and a disc of non-

conducting material moving through the field in the direction

of the #-axis (Fig. 101). As there are no non-conductors that

are appreciably magnetizable, we shall assume p = 1. Let the

two bounding faces of the disc, which are perpendicular to

the jy-axis, be covered with metal, and let these surface layers

be connected to an electrometer by means of sliding contacts,

so that the charges that arise on them can be measured.

This experiment corresponds exactly with the induction

experiment discussed under (ib), except that a moving dielectric
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now takes the place of the moving conductor. The law of

induction is applicable in the same way. It demands the

existence of an electrical field E = vH, acting in the magnetic

direction of the v-axis, if the thickness of the disc is unity.

Hence, according to Hertz' theory, the two superficial layers

must exhibit opposite charges of the surface density - - = • —
t

which cause a deflection of the electrometer. The experiment

was carried out by H. F. Wilson, in 1905, with a rotating

dielectric, and it did, indeed, confirm the existence of the

charge produced, but again to a lesser extent, namely, corre-

vH.
sponding to a surface density (e — 1) — . It again seemed as

477*

if not the whole ether took part in the motion of matter, but

only a part which is greater in proportion as the latter is more

H\

W

Fig. ioi.

strongly dielectric than a vacuum. Here too, then, Hertz' theory

fails.

In all these four typical phenomena what counts is clearly

only the relative motion of the field-producing bodies with

respect to the conductor or insulator investigated. Instead of

moving this in the ^-direction, as we have done, we could have
kept it at rest and moved the remaining parts of the apparatus

in the negative direction of the *-axis. The result would have
to be the same. For Hertz' theory recognizes only relative

motions of bodies, the ether being also reckoned as a body.

In a system moving with translation all events happen, ac-

cording to Hertz, as if it were at rest ; that is, the classical

principle of relativity holds.

But Hertz' theory is incompatible with the facts, and soon

had to make way for another, which took exactly the opposite

point of view with regard to relativity.
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12. The Electron Theory of Lorentz

It is the theory of H. A. Lorentz (proposed in 1892) that

signified the climax and the final step of the physics of the

material ether.

It is a one-fluid theory of electricity that has been still

further developed atomistically, and this, too, is, as we shall

see presently, what determines the part which it allocates to

the ether.

The fact that electric charges have an atomic structure, that

is, occur in very small indivisible quantities, was first stated by

Helmholtz (in 1881) in order to make intelligible Faraday's

laws of electrolysis (p. 135). Actually, it was only necessary to

assume that every atom in an electrolytic solution enters into

a sort of chemical bond with an atom of electricity or an

electron, to understand that a definite amount of electricity

alwavs separates out equivalent amounts of substances.

The atomic structure of electricity proved of particular value

for explaining the phenomena which are observed in the passage

of the electric current through a rarified gas.

Here it was first discovered that positive and negative

electricity behave quite differently. If two metal electrodes

are introduced into a glass tube and if a current is made to

pass between them (Fig. 102), very complicated phenomena
are produced so long as gas is still present at an appreciable

pressure in the tube. But if the gas is pumped out more and

more, the phenomena become simpler and simpler. When the

vacuum is very high the negative electrode, the cathode K

,

emits a ray of bluish light rectilinearly, taking no account of

where the positive pole, the anode A, is situated. These

cathode rays, which were discovered by Plucker (1858) were

regarded by some physicists as light rays, for, as Hittorf (1869)

showed, they threw shadows of solid bodies that were inter-

posed in their path. Others regarded them as a material

emanation that was shot out by the cathode. Crookes, who
upheld this view (1879), called these rays the "fourth state"

of matter. A fact that spoke in favour of the material nature

of the rays was, above all, that they were deflected by a magnet,

and, indeed, just like a stream of negative electricity. The

greatest share in investigating the nature of cathode rays was

taken by Sir J. J. Thomson and P. L. Lenard. It was suc-

cessfully shown that the negative charge of the rays could be

caught up directly. Furthermore, they are deflected by an

electric field applied perpendicularly to their path, and this

deflection is opposite to the direction of the field, which again

proves the charge to be negative.
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The conviction that the nature of cathode rays is cor-

puscular grew to certainty when physicists succeeded in

deducing quantitative conclusions concerning their velocity and

their charge.

If we picture the cathode ray as a stream of small parti- 1.
-

of mass m, then clearly it will be the less deflected by a definite

electrical or magnetic field the greater its velocity ;
just as a

rifle-bullet travels with more " rush " the greater its velocity.

Now it is possible to produce cathode rays that can be strongly

deflected, that is, slow cathode rays. These may be accelerated

artificially so strongly that their initial velocity may be neglected

in comparison with their final velocity, to achieve this a

wire net or grid N is placed before the cathode K (Fig. 103)

and is strongly charged positively. The negative cathode ray

particles are then strongly accelerated in the field between the

cathode and the grid, and they fly through the meshes of the

grid with a velocity that is essentially due only to this accelera-

FlG. 102. "G- I03-

tion. But this may be calculated from the fundamental equation

of mechanics

mb = K = eE

where e is the charge, and E is the field strength. We are

here clearly dealing with a case analogous to that of "falling"

bodies, in which the acceleration is not equal to that of gravity

g but to -E. If the ratio - were known, the velocity v could
m m

be found from the laws for falling bodies. But there are two

unknowns, — and v, and hence another measurement is necessary
' m

if they are to be determined. This is obtained by applying a

lateral magnetic force. In discussing Hertz' theory (V, II, ib,

p. 164) we saw that a magnetic field H calls up in a body

moving perpendicularly to H an electric intensity of field

E = - H, which is perpendicular both to H and to v. Hence

a deflecting force *E = *-H will act on every cathode ray
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particle, so that there will be an acceleration b= H perpen-
r m c

dicular to the original motion. This may be found by measuring

the lateral deflection of the ray. Hence we have a second

equation for determining the two unknowns, — and v.

The determinations carried out by this or a similar method

have led to the result that, for velocities that are not too

great, — has a definite constant value :

m
e

m
JL = 5.31 . io17 electrostatic units per grm. . (65)
m

On the other hand, in dealing with electrolysis (V, 3, formula

(48), p. 136), we stated that 1 grm. of hydrogen carries an

amount of electricity C = 2-90 . io14
. If we now make the

readily suggested assumption that the charge of a particle is

in each case the same, namely, an atom of electricity or an

electron, we must conclude that the mass of the cathode ray

particle m must bear the following ratio to that of the hydrogen

atom wH :

m
= J_ • 1 =- 2'9° ' IQl4 _ T

(66)
m^~' nTH ' m 5-31 • io17 1830

Thus, the cathode ray particles are nearly 2000 times lighter

than hydrogen atoms, which are the lightest of all chemical

atoms. This result leads us to conclude that the cathode rays

are a current of pure atoms of electricity.

This view has excellently stood the test of innumerable re-

searches. Negative electricity consists of freely-moving electrons,

but positive electricity is bound to matter, and never occurs with-

out it. Thus, recent experimental researches have confirmed

and given a precise form to the old hypothesis of the one-fluid

theory. The amount of the charge e of the individual electron

has also been successfully determined. The first experiments of

this type were carried out by Sir J. J. Thomson (1898). The

underlying idea is : little drops of oil or water, or little spheres

of metal of microscopic or sub-microscopic dimensions, which

are produced by condensation of vapour or electrical " spotting"

in air, fall with constant velocity, since the friction of the air

prevents acceleration. By measuring the rate of fall, the size

of the particles can be determined, and then their mass M is ob-

tained by multiplying their size by the density. The weight of

such a particle is then Mg, where g = 981 cmjsec2 is the accelera-

tion due to gravity. Now, such particles may be charged electric-

ally by subjecting the air to the action of Rontgen rays or the
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rays of radioactive substances. If an electric field E, which is

directed vertically upwards, is then applied, a sphere carrying the

charge e is pulled upwards by it, and if the electric force eE is

equal to the weight Mg, the sphere will remain poised in the air.

The charge e may then be calculated from the equation eE = Mg.
Millikan (1910), who carried out the most accurate experiments

of this sort, found that the charge of the small drops is always

an exact multiple of a definite minimum charge. Thus we shall

call this the elementary electrical quantum. Its value is

e = 477 . 10
_ 10 electrostatic units . . (67)

It must be mentioned that the results of Millikan's experiments

are disputed by Ehrenhaft, but it is probable that the values

below e obtained by the latter for the elementary charge are

due to his having used spheres which were too small, and which
gave rise to secondary phenomena.

The absolute value of the elementary charge plays no essential

part in Lorentz' theory of electrons. We shall now depict the

physical world sketched by Lorentz.

The material atoms are the carriers of positive electricity,

which is indissolubly connected with them. In addition they

also contain a number of negative electrons, so that they ap-

pear to be electrically neutral with respect to their surround-

ings. In non-conductors the electrons are tightly bound to

the atoms ; they may only be displaced slightly out of the

positions of equilibrium, by which the atom becomes a dipole.

In electrolytes and conducting gases it may occur that an atom
has one or more electrons too many or too few ; it is then

called an ion or a carrier, and it wanders in the electric field

carrying electricity and matter simultaneously. In metals the

electrons move about freely, and experience resistance only when
they collide with the atoms of the substance. Magnetism comes
about through the electrons in certain atoms moving in closed

orbits and hence representing Ampere molecular currents.

The electrons and the positive atomic charges swim about
in the sea of ether, in which an electromagnetic field exists in

accordance with Maxwell's equations. But we must set € = 1,

/x = 1 in them, and, in place of the density of the conduction

current, we have the convection current pv of the electrons.

The equations thus become

divE = P curl H - - - = pv
)

ih °\ '
* <

68
)

div H = curl E-f— =0 1

ct
J
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and include the laws of Coulomb, Biot, and Savart, and Faraday
in the usual way.

Thus all electromagnetic events consist fundamentally of the

motions of electrons and of the fields accompanying them. All

matter is an electrical phenomenon. The various properties

of matter depend on the various possibilities of motion of the

electrons with respect to atoms, as in the manner just now
described. The problem of the theory of electrons is to derive

the ordinary equations of Maxwell from the fundamental laws

(68) for the individual invisible electrons and atoms, that is,

to show that material bodies appear to have, according to their

nature, respectively, a conductivity a, a dielectric constant, € and
a permeability fi.

Lorentz has solved this problem and has shown that the

theory of electrons not only gives Maxwell's laws in the simplest

case, but, more than this, also makes it possible to explain

numerous finer facts which were insoluble for the descriptive

theory or could be accounted for only with the aid of artificial

hypotheses. These facts comprise, above all, the finer phen-

omena of optics, colour dispersion, the magnetic rotation of

the plane of polarization (p. 155) discovered by Faraday, and
similar interactions between light waves and electric or mag-
netic fields. We cannot enter further into this extensive and
mathematically complicated theory, and shall restrict ourselves

to the question which is of primary interest to us : what part

does the ether take in the motions of matter ?

Lorentz proclaimed the very radical thesis, which had never

before been asserted with such definiteness :

The ether is at rest in absolute space.

In principle this identifies the ether with absolute space.

Absolute space is no vacuum, but a something with definite

properties, whose state is described when two directed quantities

are given, the electrical field E and the magnetic field H, and, as

such, it is called the ether.

This assumption goes still a little further than the theory of

Fresnel. In the latter the ether of astronomic space was at

rest in an inertial system, which we might also call absolute

rest. But the ether inside material bodies is partly carried

along by them.

Lorentz can dispense even with this partial convection and yet

arrives at practically the same result. To see this, we consider

the phenomenon that occurs in a dielectric between the plates

of a condenser. When the latter is charged, a field perpen-

dicular to the plate arises (Fig. 104), and this displaces the

electrons in the atoms of the dielectric substance and trans-

forms them into dipoles, as we explained earlier (pp. 146 and 171).
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The dielectric displacement in Maxwell's sense is cE, but only

a part of it is due to the actual displacement of the electrons.

For a vacuum has the dielectric constant e = i, and hence

the displacement E ; consequently the true value of the electronic

displacement is cE — E (e — i) E. Now we have seen that the

experiments of Rontgen and Wilson on the phenomena in moving
insulators affirm that actually only this part of the displacement

takes part in the motion. Thus Lorentz' theory gives a correct

account of electromagnetic facts without needing to have recourse

in any way to the motion of matter.

The fact that the convection of light comes out in exact

agreement with Fresnel's formula (43), (p. 117) is made plausible

by the following argument.

As in Wilson's experiment, we consider a dielectric body
which moves in the ^-direction with the velocity v and in which

a light ray travels in the same direction (Fig. 105). Let this

O O
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Fig. 104.
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Thus this value should correspond to the absolute velocity of

the ether within matter according to Fresnel's theory, that is,

to the convection coefficient called </> in optics, cf. formula (43).

And this is precisely the case actually. For, according to

Maxwell's electromagnetic theory (p. 158) the dielectric constant

e is equal to the square of the index of refraction n, i.e. e = n2
.

If we insert this value, we get

e — i n l — 1
v = ^

—

» = (* -£>=*.

in agreement with formula (43) (p. 117).

We recall to ourselves that Fresnel's theory encountered

difficulties through colour dispersion. For, if the refractive

index n depends on the frequency (colour) of the light, so also

will the convection coefficient 6. But the ether can be carried

along in only one definite way, and not differently for each

colour. This difficulty vanishes entirely for the theory of

electrons, for the ether remains at rest, and it is the electrons

situated in the matter that are carried along ; and colour disper-

sion is due to their being forced into vibration by the light and

reacting, in turn, on the velocity of the light.

We cannot enter further into the details of this theory and

its many ramifications, but we shall recapitulate the result as

follows.

Lorentz' theory presupposes the existence of an ether that

is absolutely at rest. It then proves that, in spite of this,

all electromagnetic and optical phenomena depend only on

the relative motions of translation of material bodies, so far

as terms of the first order in p come into account. Hence it

accounts for all known phenomena, above all for the fact that

the absolute motion of the earth through the ether cannot be

shown by experiments on the earth involving only quantities

of the first order (this is the optical or, rather, the electro-

magnetic principle of relativity).

But an experiment of the first order may be imagined

which would be just as little capable of being explained by

Lorentz' theory as by all the theories previously discussed : this

would be a failure of Romer's method for determining an absolute

motion of the whole solar system (see pp. 80 and in).

The deciding point for Lorentz' theory is whether it stands

the test of experiments that allow quantities of the second

order in j3 to be measured. For they should make it possible

to establish the absolute motion of the earth through the ether.

Before we enter into this question, we have yet to discuss an

achievement of Lorentz' theory of electrons through which its
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range became greatly extended, namely, the electro-dynamic in-

terpretation of inertia.

13. Electromagnetic Mass

The reader will have remarked that from the moment
when we left the elastic ether and turned our attention to the

electrodynamic ether, we had little to say about mechanics.

Mechanical and electrodynamic phenomena each form a realm

for themselves. The former take place in absolute Newtonian

space, which is defined by the law of inertia and which betrays

its existence through centrifugal forces ; the latter are states

of the ether which is at rest in absolute space. A compre-

hensive theory, such as that of Lorentz aims at being, cannot

allow these two realms to exist unassociated side by side.

Now we have seen that physicists have not succeeded satis-

factorily in reducing electrodynamics to terms of mechanics in

spite of incredible effort and ingenuity.

The bold idea of the converse then suggests itself : cannot

mechanics be reduced to terms of electrodynamics ?

If this could be carried out successfully the absolute abstract

space of Newton would be transformed into the concrete ether.

The inertial resistances and centrifugal forces would have to

appear as physical actions of the ether, say, as electromagnetic

fields of particular form, but the principle of relativity of

mechanics would have to lose its strict validity and would be

true, like that of electrodynamics, only approximately, for

v
quantities of the first order in j8 = -.

c

Science has not hesitated to take this step, which entirely

inverts the order of rank of conceptions. And although the

doctrine of the ether which is absolutely at rest had later to

be dropped, this revolution, which ejected mechanics from its

throne and raised electrodynamics to sovereign power in physics,

was not in vain. Its result has retained validity in a somewhat
altered form.

We saw above (p. 157) that the propagation of electro-

magnetic waves comes about through the mutual action of

electrical and magnetic intensity of field, producing an effect

which is analogous to that of mechanical inertia. An electro-

magnetic field has an inertial power of persistence quite similar

to that of matter. To generate it, work must be performed,

and when it is destroyed tins work again appears. This is

observed in all phenomena that are connected with electro-

magnetic vibrations, for example, in the various forms of

apparatus of wireless telegraphy. A wireless sending station
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contains an electric oscillator, which consists essentially (Fig.

106) of a spark gap F, a coil S, and a condenser K, that is,

two metal plates that are separated from each other, and these

instruments, connected by wires, form an " open " circuit.

The condenser is charged until a spark jumps across the gap

at F. This causes the condenser to become discharged, and

the quantities of electricity that have been stored flow away.

They do not simply neutralize each other, but shoot beyond

the state of equilibrium and again become collected on the

condenser plates, only with reversed signs, just like a pendulum

swings past the position of equilibrium to the opposite side.

When the condenser has thus been charged up afresh, the elec-

tricity again flows back and swings to and fro until its energy

has been used up in warming the conducting wires or in being

passed on to other parts of the apparatus, for example, the emitting

antenna. Thus the swinging of the electricity to and fro proves

Fig. 106. Fig. 107.

the inertial property of the field, which exactly corresponds to

the inertia of mass of the pendulum bob. Maxwell's theory

represents this fact correctly in all details. The electromagnetic

vibrations that occur in a definite set of apparatus can be pre-

dicted by calculations from the equations of the field.

This led J. J. Thomson to infer that the inertia of a body

must be increased by an electric charge which is imparted to

it. Let us consider a charged sphere at first at rest and then

moving with the velocity v. The stationary sphere has an

electrostatic field with lines of forces which run radially out-

wards, the moving sphere has, in addition, a magnetic field

with circular lines and forces that encircle the path of the sphere

(Fig. 107). For a moving charge is a convection current and

produces a magnetic field in accordance with Biot and Savart's

law. Both states have the inertial property above described.

The one can be transformed into the other only by the perform-

ance of work. The force that is necessary to set the stationary

sphere into motion is thus greater for the charged than for the

uncharged sphere. To accelerate the moving charged sphere
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still further, the magnetic field H must clearly be strengthened.

Thus, again, an increase of force is necessary.

We remember that a force K that acts for a short time /

represents an impulse J = Kt, which produces a change of

velocity w in a mass m in accordance with the formula (7)

(II, 9, p. 31)

:

mw — J.

If the mass carries a charge, a definite impulse J will produce a
smaller change of velocity, and the remainder J' will be used
to charge the magnetic field. Thus we have

mw = J — J'.

Now, calculation gives the rather natural result that the impulse

J' necessary to increase the magnetic field is the greater, the

greater the change of velocity w, and, indeed, it is approximately
proportional to this change of velocity. Thus we may set

J' = m'w, where m' is a factor of proportionality, which,

moreover, may depend on the state, that is, the velocity v,

before the change of velocity occurs. We then have

mw = J — m'w
or (m + m')w = J.

Thus, it is as if the mass m is augmented by an amount m't

which is to be calculated from the electromagnetic field

equations, and which may be dependent on the velocity v.

The exact value of m' for any velocities v may be calculated

only if assumptions are made about the distribution of the

electric charge over the moving body. But the limiting value

for velocities that are small compared with that of light c,

that is, for small values of jS, is obtained independently of such
assumptions as

«.=|^ (69)

where U is the electrostatic energy of the charges of the body.

We have seen that the mass of the electron is about 2000

times smaller than that of the hydrogen atom. Hence the idea

suggests itself that the electron has, perhaps, no " ordinary
"

mass at all, but is nothing other than an " electric " charge in

itself, and that its mass is electromagnetic in origin.

Is such an assumption reconcilable with the knowledge
that we have of the size, charge, and mass of the electron ?

Since the electrons are to be the structural elements of atoms,

they must at any rate be small compared with the size of

atoms. Now we know from atomic physics that the radius of

12
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atoms is of the order 10 ~ 8 cms. Thus the radius of the electron

must be essentially smaller than 10 ~ 8 cms. If we imagine

the electron as a sphere of radius a with the charge e distributed

over its surface, then, as may be derived from Coulomb's law,

the electrostatic energy isU = - -. Hence, by (69), the elec-

tromagnetic mass becomes

4U 2 e 2

3 c 2 3 ac 2
'

From this we can calculate the radius a :

_ 2 e e

"
3 ' c * ' mo

p
On the right-hand side we know all the quantities ; — from

m
the deflection of the cathode rays [formula (65), p. 170], e

from Millikan's measurements [formula (67), p. 171], and c is

the velocity of light. If we insert the values given, we get

2 477. io- 1Q
17 1>g8 I0 _i3 cms

3 9 . io20 D °

a length which is about 100,000 times smaller than the radius

of an atom.
Thus the hypothesis that the mass of the electron is electro-

magnetic in origin does not conflict with the known facts.

But this does not prove the hypothesis.

At this stage theory found strong support in refined observa-

tions of cathode rays, and of the jS-rays of radio-active sub-

stances, which are also ejected electrons. We explained above

how electric and magnetic action on these rays allow us to

determine the ratio of the charge to the mass, - , and also their
m
p

velocity v, and that at first a definite value for - was obtained,

which was independent of v. But, on proceeding to higher

velocities, a decrease of — was found. This effect was par-
as

ticularly clear, and could be measured quantitatively, in the

case of the jS-rays of radium, which are only slightly slower

than light. It was incompatible with the ideas of the electron

theory that an electric charge should depend on the velocity.

But that the mass should depend on the velocity was certainly

to be expected if the mass was to be electromagnetic in origin.

To arrive at a quantitative theory, it is true, definite assumptions
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had to be made about the form of the electron and the dis-

tribution of the charge on it. M. Abraham (1903) regarded the

electron as a rigid sphere, with a charge distributed uniformly

over the interior or over the surface, and he showed that

both assumptions lead to the same dependence of the electro-

magnetic mass on the velocity, namely, to an increase of mass
with increasing velocity. The more quickly the electron

travels, the more the electromagnetic field resists a further

increase of velocity. The increase of m explains the observed

decrease of — , and Abraham's theory agrees very well quanti-
m

tatively with the results of measurement of Kaufmann (1901),

if it is assumed that there is no " ordinary " mass present with

the electromagnetic mass.

Thus, the object of tracing the inertia of electrons back to

electromagnetic fields in the ether was attained. At the same
time a further perspective presented itself. Since atoms are the

carriers of positive electricity, and also contain numerous
electrons, perhaps their mass is also electromagnetic in origin ?

In that case, mass as the measure of the inertial persistence

would no longer be a primary phenomenon, as it is in ele-

mentary mechanics, but a secondary consequence of the struc-

ture of the ether. Newton's absolute space, which is defined

only by the mechanical law of inertia, thus becomes superfluous
;

its part is taken over by the ether, whose electromagnetic

properties are so well known. In this way a very concrete

solution of the problem of space would be obtained, and it

would be one that would be in conformity with physical thought.

We shall see (V, 15, p. 184) that new facts contradict

this view. But the relationship between mass and electro-

magnetic energy, which was first discovered in this way, de-

notes a fundamental discovery, the deep significance of which
was brought into due prominence only when Einstein proposed

his theory of relativity.

We have yet to add that, besides Abraham's theory of

the rigid electron, other hypotheses were set up and worked
out mathematically. The most important is that of H. A.

Lorentz (1904), which is closely connected with the theory

of relativity. He assumed that during its motion the elec-

tron contracts in the direction of motion ; so that from a

sphere it becomes a flattened spheroid of revolution, the

amount of the flattening depending in a definite way on
the velocity. This hypothesis seems at first sight strange.

It certainly gives an essentially simpler formula for the way
the electromagnetic mass depends on the velocity than
Abraham's theory, but this does not justify it. The true
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criterion is given in the development which Lorentz' theory

of electrons had to follow beyond quantities of the second

order in consequence of experimental researches, to which we
shall presently direct our attention. Lorentz' formula then

gained a universal significance in the theory of relativity.

We shall return to the experimental decision between it and
Abraham's theory later (VI, 7, p. 221).

After the theory of electrons had reached the stage above
described, towards the close of the new century, the possibility

of forming a uniform physical picture of the world seemed
to have drawn near, one which would reduce all forms of

energy, including mechanical inertia, to the same root, to

the electromagnetic field in the ether. Only one form of

energy still remained outside the system, namely, gravitation

;

yet it seemed reasonable to hope that that, too, would allow

itself to be interpreted as an action of the ether.

14. MlCHELSON AND MORLEY'S EXPERIMENT

Even twenty years before, however, the base of the whole

structure had suffered a fissure, and, whilst additions were
being made above, supports and substitutes had to be applied

below.

We have several times emphasized that the decisive ex-

periments for the theory of the stationary ether had to be

such as involved the measurement of quantities of the second

order in ]8. This would necessarily bring to light whether the

ether wind sweeps past a quickly moving body and disperses

the light waves, as is demanded by theory.

Michelson and Morley (1881) were the first to carry out

successfully the most important experiment of this type with

Michelson's interferometer (IV, 4, p. 88), which he had refined

to a precision instrument of unheard-of efficiency.

In investigating the influence of the earth's motion on the

velocity of light (IV, 9, p. 113), it has been found that the

time taken by a ray of light to pass to and fro along a dis-

tance I parallel to the earth's motion differs only by a

quantity of the second order from the value which it has

when the earth is at rest. We found earlier that this time

was

\C + V c — vj C 2 — V 1

for which we may also write

. _ 2/ 1
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If this time could be so accurately measured that the

fraction ^ could be distinguished from i in spite of the
1 — P

extremely small value of the quantity jS
2

, we should have

means of proving the existence of an ether wind.

But it is by no means possible to measure "light" times

(i.e. the short times taken by light rays to traverse certain

distances) . Interferometric methods give us rather only differ-

ences of the times taken by light to traverse various different

routes, but with the amazing accuracy that is necessary for

this purpose.

For this reason Michelson and Morley caused a second

ray of light to traverse a path AB of the same length / to

and fro, but perpendicularly to the earth's orbit (Fig. 108).

Whilst the light passes from ,

A to B, the earth moves a

short distance forward so that

the point B arrives at the point

B' of the ether. Thus the true

path of the light in the ether

is AB', and if it takes a time

t to cover this distance, then

AB' = ct. During the same A vl A 1 ~A rr

time A has moved on to the Fig. 108.

point A' with the velocity v,

thus AA' == vt. If we now apply Pythagoras' theorem to the

right-angled triangle AA'B, we get

cH 2 = I
2 + vH%

or

*»(c* - V 2
)
= I

2
,

t
2 =

/ I
\

ct
\ \

/

C 2 _ y2 c 2 '

I - jS
2

'

c Ji - jS
2

The light requires exactly the same time to do the return

journey, for the earth shifts by the same amount, so that the

initial point A moves from A' to A".

Thus the light takes the following time for the journey to

and fro :

u^ 1 J

The difference between the times taken to cover the same
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distance parallel and perpendicular to the earth's motion is

thus

1 h c\l-P JT=J
Now, by neglecting members of higher order than the

second in j8 (as we did on p. 108) we may approximate by

replacing _* by i + £
2

, and
*

by i + /3
2/2.*

1 ~ P v/i — p

Hence we may write to a sufficient degree of approxima-
tion

k-k = ~[ (i + P) - (i +m ]- f • f =

^

2
-

The retardation of the one light wave compared with the

ether is thus a quantity of the second order.

This retardation may be measured with the help of

Michelson's interferometer (Fig. 109). In this (cf. p. 113)

the light coming from the source Q is divided at the half-

silvered plate P into two rays which run in perpendicular

directions to the mirrors Sj and S 2 , at which they are reflected

and sent back to the plate P. From P onwards they run
parallel into the telescope F, where they interfere. If the

distances S
a
P and S 2P are equal, and if the one arm of the

apparatus is placed in the direction of the earth's motion,

the case just discussed is exactly realized. Thus the two

rays reach the field of vision with a difference of time - £
2

.

Hence the interference fringes are not exactly situated where
they should be if the earth were at rest. But if we now

* For if x is a small number, whose square may be neglected, we have
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turn the apparatus through 90 , until the other arm is

parallel to the direction of the earth's motion, the inter-

ference fringes will be displaced by the same amount, but

in the opposite direction. Hence if we observe the position

of the interference fringes whilst the apparatus is being

rotated, a displacement should come into evidence which

would correspond to the double retardation 2 - /3
2

.

If T is the period of vibration of the light used, the ratio

of the retardation to the period is — j3
2

, and since by formula
ci

(35)» (P- 85), the wave length A = cT, we may write this

ratio as 2 - jS
2

.

A

St

//
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several reflections to and fro, to n metres = i-i . io3 cms

The wave length of the light used was about A = 5-9 . 10

cms. We know that j3 is approximately equal to 10
- 4

,

and hence jS
2 = 10

- 8
. So we get

2//S 2 __ 2 . 1 . 1 . io3
. 10

~ 8 _
A 5.9. io- 5

that is, the interference fringes must be displaced by more

than J of their distance apart when the apparatus is turned

through 90 . Michelson was certain that the 100th part of

this displacement would still be observable.

But when the experiment was carried out not the slightest

sign of the expected displacement manifested itself, and later

repetitions, with still more refined means, led to no other

result. From this we must conclude that the ether wind

does not exist. The velocity of light is not influenced by the

motion of the earth even to the extent involving quantities of

the second order.

15. The Contraction Hypothesis

Michelson and Morley concluded from their experiment that

the ether is carried along completely by the moving earth,

as is maintained in the elastic theory of Stokes, and in the

electromagnetic theory of Hertz. But this contradicts the

numerous experiments which prove partial convection. Michel-

son then investigated whether it was possible to establish

a difference in the velocity of light at different heights above

the earth's surface, but without a positive result. He con-

cluded from this that the motion of the ether that is carried

along by the earth must extend to very great heights above

the earth's surface. Thus, then, the ether would be influenced

by a moving body at considerable distances. But this is not

the case actually, for Oliver Lodge showed (1892) that the

velocity of light in the neighbourhood of rapidly-moving

bodies is not influenced in the slightest, not even when the

light passes through a strong electric or magnetic field, carried

along by the body. And all these efforts seem almost super-

fluous, for even if they had led to an unobjectionable

explanation of Michelson's experiment, the whole of the

rest of electrodynamics and optics of moving bodies which

speaks in favour of partial convection would remain unex-

plained.

One attempt to explain it, which was, however, de-

veloped much later by Ritz (1908), consists in the hypoth-

esis that the velocity of light depends on the velocity of the
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source of light. Yet this assumption is in contradiction to

almost all theoretical and experimental results of research.

In the first place this would deprive electromagnetic events

of their character of contiguous action, for such action con-

sists in the propagation of an effect from one point to the

next, being influenced only by the events in the immediate

neighbourhood of this point, but not on the velocity of a

far distant source of light. For this reason Ritz frankly called

his theory a sort of emission theory. But what is emitted

was, of course, not supposed to be material particles which

obey mechanical laws, but an agent which, when it enters

into matter, exerts directed transversal forces, and sets it

into vibration. Light vibrations exist then only in matter

and not in the ether. The objection that an emission theory

is unable to account for interference is clearly unjustified

in the case of this view.

But Ritz has not succeeded in bringing his theory into

agreement with optical and electromagnetic phenomena. In

all cases in which we have to do with relative motions of

the source of light and the observer, effects on the vibration

number (Doppler effect) do exhibit themselves and also

effects on the direction (aberration), but not on the velocity

of light (experiments of Arago, p. 114, and Hoek, p. 115).

Recently, de Sitter (1913) has shown in an extensive in-

vestigation that the velocity of the light which comes from

the fixed stars is independent of the motion of these stars.

We have mentioned this theory in spite oi its failure,

because one idea which it emphasizes is also important for

an understanding of the theory of relativity, namely, the

fact that all observable events are always bound to matter.

The " field in the ether " is a fiction, devised to describe the

dependence of events in bodies on space and time as simply

as possible. We shall revert to this view later.

We now turn to Lorentz' theory of electrons, which

was clearly placed in a very difficult position by Michelson

and Morley's experiment. The doctrine of the stationary

ether seems to demand implacably that an ether wind

exists on the earth, and hence stands in flagrant contradiction

to the results of Michelson and Morley's experiment. The

fact that it did not at once succumb to this proves its inherent

strength, which is due to its physical picture of the world

being uniform and complete in itself.

Finally, it even overcame this difficulty to a certain

extent, albeit by a very strange hypothesis, which was

proposed by Fitzgerald (1892) and at once taken up and

elaborated by Lorentz.
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Let us recall the reflections on which Michelson and

Morley's experiment were based. We found that the time
taken by a light ray to travel to and fro along a distance I

differs according to whether the ray travels parallel or per-
pendicularly to the earth's motion. In the former case

t1 = — . -., in the second, U = T

c i-p* c Ji _ £2'

If we now assume that the arm of the interferometer
which is directed parallel to the direction of the earth's
motion is shortened in the ratio ^/i _ £2 .

lf t^e time t

would become reduced in the same ratio, namely,

t
- 2ls/*~

II
T* - 2l

ci P) c JT=p
Thus we should have ^ = tz.

This hypothesis, the crudeness and boldness of which
surprises us, is simply this : every body which has the velocity

v with respect to thi ether contracts in the direction of motion by

the fraction

JT^J* = Ji - v*/c*.

Michelson and Morley's experiment must actually, then,

give a negative result, as for both positions of the interfero-

meter tx must equal t2 . Furthermore—and this is the im-

portant point—such a contraction could be ascertained by
no means on the earth, for every earthly measuring rod

would be contracted in just the same way. An observer

who was at rest in the ether outside the earth would, it

is true, observe the contraction. The whole earth would
be flattened in the direction of motion and likewise all things

on it.

The contraction hypothesis seems so remarkable, indeed

almost absurd, because the contraction is not a consequence
of any forces, but appears only as an accompanying cir-

cumstance of the fact of motion. But Lorentz did not

allow this objection to deter him from absorbing this hypoth-
esis in his theory, particularly as new experiments confirmed

that in the second order of small quantities, too, no effect of

the earth's motion through the ether could be detected.

We can neither describe all these experiments here, nor

even discuss them in detail. They are partly optical and
concern the events involved in reflection and retraction,

double refraction, rotation of the plane of polarization, and
so forth, and they are partly electromagnetic and concern

induction phenomena, the distribution of the current in
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wires, and so forth. The improved technique of physics

allows us nowadays to establish whether an influence of the

second order on the earth's motion manifests itself or not in

these phenomena. A particularly noteworthy experiment is

that of Trouton and Noble (1903), which was intended to

detect a torsional force which should occur in a suspended
plate-condenser in consequence of the ether wind.

These experiments without exception produced a negative

result. There could no longer be a doubt that a motion of

translation through the ether cannot be detected by an
observer who shares in the motion. Thus, the principle of

relativity which holds for mechanics is also valid for all

electromagnetic phenomena.
Lorentz next proceeded to bring this fact into harmony

with his ether theory. To do this there seemed no other

way than to assume the contraction hypothesis and to fuse

it into the laws of the electron theory so as to form a uniform
whole free from inner contradictions. He first observed that

a system of electric charges which keep in equilibrium only

through the action of their electrostatic forces, contracts of

itself as soon as it is set into motion ; or, more accurately, the

electromagnetic forces that arise when the system is moving
uniformly change the configuration of equilibrium in such a
way that every length is contracted in the direction of its

motion by the factor ^/j _ yg2

Now, this mathematical theorem leads to an explanation
of contraction, if we assume that all physical forces are

ultimately electrical in origin or that they at least follow

the same laws of equilibrium in uniformly moving systems.

The difficulty of regarding all forces as electrical is due to

the circumstance that they lead, in accordance with old and
well-known theorems, due to Gauss, to charges being in

equilibrium, but never in stable equilibrium. The forces

which bind the atoms to form molecules and the latter to

form solid bodies cannot, therefore, simply be electrical.

The necessity of assuming non-electric forces comes out most
clearly if we enquire into the dynamical constitution of an
individual electron. This is supposed to be an accumulation
of negative charge, and we must ascribe a finite extent to it,

for, as we have seen (p. 178), the energy of a spherically

1 e
2

shaped charge of radius a is equal to - -, and it becomes
2 a

infinitely great if a is set equal to nothing. But the com-
ponent parts of the electron strive to separate, since similar

charges repel. Consequently, there must be a new force

which keeps them together. In Abraham's theory of the
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electron it is assumed that an electron is a rigid sphere,

that is, the non-electric forces are to be so great that they
admit of no deformation whatsoever. But it is, of course,

possible to make other assumptions.

Now, it suggested itself to Lorentz that the electron

also experiences the contraction ^i _ p* m
We have already

stated above (p. 179) that then a much simpler formula
results for the mass of the electron than that arising from
Abraham's hypothesis. But, in addition to electromagnetic

energy, Lorentz' electrons have also an energy of deformation

of foreign origin, which is wanting in the rigid electron of

Abraham.
Lorentz next investigated the question whether the con-

traction hypothesis is sufficient for deriving the principle

of relativity. After laborious calculations he established that

this was not the case, but he also found (1899) what assump-
tion had to be added in order that all electromagnetic

phenomena in moving systems take place just as in the ether.

His result is at least just as remarkable as the contraction

hypothesis. It is : a new time measure must be used in a

system which is moving uniformly. He called this time,

which differs from system to system, " local time." The
contraction hypothesis may clearly be expressed thus : the

measure of length in moving systems is different from that

in the ether. Both hypotheses together state that space

and time must be measured differently in moving systems
and in the ether. Lorentz enunciated the laws according

to which the measured quantities in various systems may be
transformed into each other, and he proved that these trans-

formations leave the field equations of the electron theory

unchanged. This is the mathematical content of his dis-

covery. Larmor (1900) and Poincare (1905) arrived at

similar results about the same time.* We shall get to know
these relationships presently from Einstein's standpoint in

a much clearer form, and so we shall not enter into them
here. But we shall make evident to ourselves what con-

sequences the new turn in Lorentz' theory had for the idea

of the ether.

In the new theory of Lorentz the principle of relativity

holds, in conformity with the results of experiment, for all

electrodynamic events. Thus, an observer perceives the

same phenomena in his system, no matter whether it is at

* It is interesting historically that the formula of transformation to a
moving system, which we nowadays call Lorentz' transformation (see vi, 2,

p. 200 formula (72)), were set up by Voigt as early as 1877 in a dissertation

which was still founded on the elastic theory of light.
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rest in the ether or moving uniformly and rectilinearly.

He has no means at all of distinguishing the one from the

other. For even the motion of other bodies in the world,

which are moving independently of him, always informs him

only of relative motion with respect to them and never

of absolute motion with respect to the ether. Thus he can

assert that he himself is at rest in the ether, and no one can

contradict him. It is true that a second observer on another

body, moving relatively to the first can assert the same with

equal right. There is no empirical and no theoretical

means of deciding whether one of them or which is right.

Thus, here we get into exactly the same position with

respect to the ether as that into which the classical principle

of relativity of mechanics brought us with respect to the

absolute space of Newton (III, 6, p. 62). In the latter case

we had to admit that it is meaningless to regard a definite

place in absolute space as something real in the sense of

physics. For there is no mathematical means of fixing a

place in absolute space or of finding it a second time. In

precisely the same way we must now admit that a definite

position in the ether is nothing real in the physical sense,

and through this the ether itself entirely loses the character

of a substance. Indeed, we may even say : if each of two

observers who are moving relatively to each other can

assert with equal right that he is at rest in the ether, there

can be no ether.

Thus, the furthermost development of the ether theory leads

to the dissolution of its fundamental conception. But it has

required a great effort to admit the emptiness of the ether idea.

Even Lorentz, whose ingenious suggestions and laborious efforts

have led the ether theory to this crisis, hesitated for a long time

to take this step. The reason is this. The ether was conceived

for the express purpose of having a carrier of light vibrations,

or, more generally, of the electromagnetic forces in empty space.

Vibrations without something which vibrates are unthinkable.

But we have already pointed out above in discussing Ritz'

theory that to assert that in empty space, too, there are

observable vibrations goes beyond all possible experience.

Light or electromagnetic forces are never observable except

in connexion with bodies. Empty space free of all matter

is no object of observation at all. All that we can ascertain

is that an action starts out from one material body and ar-

rives at another material body some time later. What occurs

in the interval is purely hypothetical, or, more precisely ex-

pressed, arbitrary. This signifies that theorists may use their

own judgment in equipping a vacuum with phase quantities
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(denoting state), fields, or similar things, with the one restriction

that these quantities serve to bring changes observed with re-

spect to material things into clear and concise relationship.

This view is a new step in the direction of higher ab-

straction and in releasing us from common ideas that are

apparently necessary components of our world of thought.

At the same time, however, it is an approach to the ideal

of allowing only that to be valid as constructive elements of

the physical world which is directly given by experience, all

superfluous pictures and analogies which originate from a state

of more primitive and more unrefined experience being elimin-

ated.

From now onwards ether as a substance vanishes from
theory. In its place we have the abstract " electromagnetic

field " as a mere mathematical device for conveniently describing

processes in matter and their regular relationships.*

Whoever is inclined to shrink from such a formal view is

advised to think of the following fully analogous abstraction,

to which he has long accustomed himself.

To determine a place on the earth's surface trigonometrical

signs, denoting the geographical latitude and longitude, are

placed on church towers, mountain peaks, and other prominent
points. There is, however, nothing of this on the sea. There
the meridians of latitude and longitude are only imagined to be
drawn, or, as we often say, they are virtual. If a captain on
a ship wants to ascertain his position, he converts a point of

intersection of one of these imaginary lines into reality by
astronomical observations, he converts the virtual point into

a real one. The electromagnetic field is to be regarded quite

similarly. The solid surface of the earth corresponds to matter,

the trigonometrical signs to the physical changes that are ascer-

tainable. But the sea corresponds to a vacuum, the meridians

of longitude and latitude to the imagined electromagnetic field,

which is virtual until a test body is brought up, which makes
the field visible through its own actual changes, just like the

boat makes real the geographical position.

Only the reader who has made this view really his own
will be able to follow the later development of the doctrine

of space and time. Different people find progressive ab-

straction, objectivation, and relativization easy or difficult, as

the case may be. The older peoples of the Continent, Dutch,

Einstein has recently proposed to call empty space equipped with gravi-

tational and electromagnetic fields the " ether," whereby, however, this word is

not to denote a substance with its traditional attributes. Thus, in the " ether,"

there are to be no determinable points, and it is meaningless to speak of motion
relative to the " ether." Such a use of the word " ether" is of course admissible, and,

when once it has been sanctioned by usage in this way, probably quite convenient.
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French, Germans, Italians, Scandinavians, are most susceptible

to these ideas, and are most deeply engaged in elaborating this

system. Englishmen, who incline to concrete ideas, are less

readily accessible. Americans are fond of attaching them-

selves to mechanical pictures and models. Even Michelson,

whose experimental researches had the greatest share in

destroying the ether theory, repudiates a theory of light

without the ether as unthinkable. But the younger genera-

tion is already being educated in the sense of the new views,

and accepts as self-evident what was regarded by the older

school as an unheard-of innovation.

If we cast our eyes over its development we see that

the ether theory comes to an end with the theory of rela-

tivity, which is its closing chapter. Ether as a substance

disappears as a superfluous hypothesis, and the principle of

relativity comes out the more clearly as the fundamental law

of physics. This gives us the task of building up the physical

world afresh on this new and surer basis. We now thus

arrive at the researches of Einstein.



CHAPTER VI

EINSTEIN'S SPECIAL PRINCIPLE OF RELATIVITY

i. The Conception of Simultaneity

THE difficulties which had to be overcome by applying

the principle of relativity to electrodynamical events

consisted in bringing into harmony the following two
apparently inconsistent theorems :

—

1. According to classical mechanics the velocity of any
motion has different values for two observers moving relatively

to each other.

2. But experiment informs us that the velocity of light is

independent of the state of motion of the observer and has

always the same value c.

The older ether theory endeavoured to get rid of the con-

tradiction between these two laws by dividing the velocity of

light into two components, (a) the velocity of the luminiferous

ether, and (b) the velocity of light with respect to the ether
;

of these two (a) can be appropriately determined by convection

coefficients. This theory, however, was successful in elimina-

ting the contradiction only with regard to quantities of the

first order. To maintain the law of constancy of the propa-

gation of light Lorentz' theory had to introduce a special

length measure and time measure for every moving system.

The law then comes about as the expression of a sort of " phy-

sical illusion."

In 1905 Einstein recognized that Lorentz contractions and

local times were not mathematical devices and physical illusions

but involved the very foundations of space and time.

Of the two laws 1 and 2, the first is purely theoretical and

conceptual in character whereas the second is founded on

fact.

Now, since the second law, that of the constancy of the

velocity of light, must be regarded as being experimentally

established with certainty, nothing remains but to give up the

first law and hence the principles of determination of space

and time as hitherto effected. Thus there must be an error

in these principles or at least a prejudiced view, due to a con-

192
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fusion of habits of thought with logical consistency, and this

we all realize to be an obstacle to progress.

Now, the conception of simultaneity is a prejudice of this

type.

It is regarded as self-evident that there is sense in the
statement that an event at the point A, say the earth, and an
event at the place B, say the sun, are simultaneous. It is

assumed that conceptions like " moment of time," " simul-
taneity," " earlier," " later," and so forth have a meaning
in themselves a priori which is valid for the whole universe.

This was Newton's standpoint, too, when he postulated the
existence of an absolute time or duration of time (III, i, p. 50),
which was to pass " uniformly and without reference to any
external object whatsoever."

But there is certainly no such time for the quantitative
physicist. He sees no meaning in the statement that an event
at A and an event at B are simultaneous, since he has no means
of deciding the truth or the incorrectness of this assertion.

For, to be able to decide whether two events at different

points are simultaneous we must have clocks at every point
which we know with certainty to go at the same rate or to

beat " synchronously." Thus the question resolves into this :

can we define a means of testing the equal rate of beating of

two clocks situated at different points ?

Let us imagine the two clocks at A and B a distance I

apart at rest in a system of reference S. Now there are two
methods of regulating the clocks to go at the same rate.

1. We may take them to the same point, regulate them
there so that they go in unison and then restore them to A
and B respectively.

2. We may use time-signals to compare the clocks.

Both processes are adopted in practice. A ship at sea
carries with it a chronometer which beats accurately and which
has been regulated in accordance with the normal clock in the
home-port, and, moreover, it receives time-signals by wireless

telegraphy.

The fact that these signals are regarded as necessary proves
our lack of confidence in " transported " time. The practical

weakness of the method of transportable clocks consists in the
circumstance that the smallest error in the beating increases
continually. But even if the assumption is made that there
are ideal clocks free from error (such as the physicist is convinced
he has in the atomic vibrations that lead to the emission of

light), it is logically inadmissible to base on them the definition

of time in systems moving relatively to each other. For the
equal beating of two clocks, however good they may be, can

13
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be tested directly, that is, without the intervention of signals

only if they are at rest relatively to each other. It cannot be

established without signals that they maintain the same rate

when in relative motion. This would be a pure hypothesis

which we should have to endeavour to avoid if we wished to

adhere to the principles of physical research. This impels us

to adopt the method of time-signals to define time in systems

moving relatively to each other. If this allows us to arrive

at a method of measuring times which is free from contradic-

tions, we shall have to investigate subsequently how an ideal

clock has to be constituted in order that it should always show

the " right " time in systems moving arbitrarily (see VI, 5,

p. 214).

Let us picture a long series of barges B, C, D, drawn by a

steam-tug A over the sea. Suppose there is no wind but that

the fog is so thick that each ship is invisible to the others.

Now, if the clocks on the barges and the tug are to be com-

pared, sound signals will be used. The tug A sends out a shot

at 12 o'clock and when the sound is audible on the barges,

the bargemen will set their clocks at 12. But it is clear that

in doing so they commit a small error, since the sound requires

a short time to arrive from A at B, C, . . . If the velocity

of sound c is known this error can be eliminated, c is equal

to about 340 metres per sec. If the barge B is at a distance

/ = 170 metres behind A, the sound will take t = - = -3— —
i

340

\ sec. to travel from A to B, and hence the clock at B must

be set \ sec. after 12 at the moment when the sound reaches

it. But this correction, again, is right only if the tug and

barges are at rest. As soon as they are in motion the sound

clearly requires less time to get from A to B, because the barge

B is moving towards the sound wave. If we now wish to

apply the true correction we must know the absolute velocity

of the ships with respect to the air. If this is unknown it

is impossible to compare times absolutely with the help of

sound. In clear weather we can use light in place of sound.

Since light travels enormously more quickly the error will at any

rate be small, but in a question of principle the absolute magni-

tude is of no account. If we imagine in place of the tug and

the barges a heavenly body in the sea of ether, and light signals

in place of sound signals, all our reflections remain valid and

unchanged. There is no more rapid messenger than light in the

universe. We see that the theory of the absolutely stationary

ether leads to the conclusion that an absolute comparison of

times can be carried out in moving systems only if we know the

motion with respect to the ether.
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But the result of all the experimental researches was that
it is impossible to detect motion with respect to the ether by
physical means. From this it follows that absolute simul-
taneity can likewise be ascertained in no way whatsoever.

The paradox contained in this assertion vanishes if we
make clear to ourselves that to compare times by means of
light signals we must know the exact value of the velocity of
light, but that the measurement of the latter again entails

the determination of a length of time. Thus we are obviously
moving in a vicious circle.

Now, even if we cannot attain absolute simultaneity it is

possible, as Einstein has shown, to define a relative simultaneity
for all clocks that are relatively at rest with respect to each
other, and yet it is not necessary to know the value of the
velocity of the signals.

We shall first show this for the case of the tug and the
barges. When they are at rest we can make the clocks in
the boats A and B (Fig. in) go at the same rate by the following
means. We place a boat C exactly half way between the boats
A and B and send off a shot from
C. Then it must be heard simul- {

taneously at A and B. h -t di

Now if the boats S are in

motion we may clearly apply the

same method. If it does not occur to the bargemen that

they are moving relatively to the air they will be convinced
that the clocks at A and B go equally quickly.

Suppose a second series of boats S', whose barges A', B', C
are at exactly the same distances apart as the corresponding
boats of the first series S, compare their clocks in exactly the

same way. If, now, the one series overtakes the other, whether
the latter be at rest or not, the ships will pass each other,

and at a certain moment A will coincide with A' and B with
B', and the bargemen can test whether their clocks agree.

Of course they will find that they do not. Even if A and A'
should accidentally be beating synchronously, B and B' will

not do so.

This will bring the error to light. When the boats are in

motion the signal from the middle-point C evidently takes

more time to arrive at the preceding ship A and less time to

arrive at the following ship B than when the boats are at rest,

because A is moving away from the sound wave whilst B is

moving towards it, and this difference varies with the velocities

of the two series.

Now in the case of sound, one system has the correct time,

namely, that which is at rest relative to the air. In the case of
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light, however, it is not possible to assert this because absolute

motion with respect to the luminiferous ether is a conception

which, according to all experience, has no physical reality.

The method we illustrated for sound just now to regulate

clocks is, of course, also possible with light. The clocks at

A and b' are set so that every flash of light sent out from the

middle-point C of the distance AB reaches the clocks A and B
just as their hands are in the same position. In this way

every system can have the synchronism of its clocks adjusted.

But when two such systems meet each other and if the clocks

A, A' agree in time then B, B' will exhibit different positions

of the hands. Each system may claim with equal right that

it has the correct time, for each can assert that it is at rest,

since all physical laws are the same in each.

But when two claim what, by its very meaning, can belong

to only one, it must be concluded that the claim itself is meaning-

less. There is no such thing as absolute simultaneity.

Whoever has once grasped this will find it difficult to under-

stand why it took many years

of exact research until this

simple fact was recognized. It

is a repetition of the old story

of the egg of Columbus.

The next question is

whether the method of com-

paring clocks which we have

introduced leads to a con-

sistent relative conception of

time.

This is actually the case. To see this we shall use

Minkowski's representation of events or world-points in an

^-plane, in which we restrict ourselves to motions in the

^-direction and thus omit those in the y- and ^-directions

Fig. 112).

The points A, B, and C, that are at rest on the #-axis, are

represented in the ^-co-ordinate system as three parallels

to the 2-axis. Let the point C lie midway between A and B.

At the moment t — a light-signal is to be sent out from it

in both directions.

We assume that the system S is " at rest," that is, that the

velocity of light is the same in both directions. Then the light-

signals moving to the right and left are represented by straight

lines which are equally inclined to the #-axis, and which we

call " light-lines." We shall make their inclination 45 ;
this

evidently amounts to saying that the same distance which repre-

sents the unit length 1 cm. on the *-axis in the figure signifies the
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very small time - sees, on the /-axis, which the light takes to
C

traverse the distance i cm.
The /-values of the points of intersection A lt B lf of the light-

lines with the world-lines of the points A and B give the times

at which the two light-signals arrive. We see that A x and B
x

lie on a parallel to the #-axis, that is, they are simultaneous.

The three points, A, B, C, are next to be moving uniformly

with the same velocity. Their world-lines are then again

parallel, but inclined to the x-axis (Fig. 113). The light-

signals are represented by the same light-lines, proceeding

from C, as above, but their points of intersection, A/, B/ with

the world-lines A, B do not now lie on a parallel to the #-axis
;

thus they are not simultaneous in the A;/-co-ordinate system,

and B/ is later than A2
'. On the other hand an observer

moving with the system can with equal right assert that

Ax
', B

x
' are simultaneous

events (world-points)

.

He will use an ^'-co-
ordinate system S' in

which the points A/,
B2

' lie on a parallel to

the #'-axis. The world-

lines of the points A, B,

C are, of course, parallel

to the /'-axis, since A,

B, C are at rest in the

system S' and hence their

^'-co-ordinates have the

same values for all t"s.

From this it follows that the moving system S' is represented

in the %2-plane by an oblique co-ordinate system %'t' , in which

both axes are inclined to the original axes.

We now recall that in ordinary mechanics the inertial

systems in the #/-plane are likewise represented by oblique

co-ordinates with /-axes arbitrarily directed, the #-axis, how-
ever, always remaining the same (III, 7, p. 66). We have
already pointed out that from the mathematical point of view

this is a flaw which is eliminated by the theory of relativity.

We now see clearly how this happens as a result of the new
definition of simultaneity. At the same time a glance at the

figure convinces us without calculation that this definition

must be consistent in itself. For it signifies nothing other than

that we use oblique instead of rectangular co-ordinates.

The units of length and time in the oblique system are not

yet determined by the construction, for this makes use only
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of the fact that in a system S light is propagated with equal

velocity in all directions, but not of the law that the velocity

of light has the same value c in all inertial systems. If we
enlist the help of the latter, too, we arrive at the complete

kinematics of Einstein.

2. Einstein's Kinematics and Lorentz Transformations

We once more repeat the hypothesis of Einstein's kinematics.

i. The Principle of Relativity .—There are an infinite number
of systems of reference (inertial systems) moving uniformly

and rectilinearly with respect to each other, in which all

physical laws assume their simplest form (originally derived

for absolute space or the stationary ether).

2. The Principle of the Constancy of the Velocity of Light.—
In all inertial systems the velocity of light has the same value

when measured with length-measures and clocks of the same
kind.

Our problem is to derive the relations between lengths and
times in the various inertial systems. In doing so we shall

again restrict ourselves to motions that occur parallel to a

definite direction in space, the ^-direction.

Let us consider two inertial systems S and S' which have

the relative velocity v. The origin of the system S' thus has

the co-ordinate x = vt relative to the system S at the time

t. Its ^world-line) is characterized in the system S' by the

condition x' = o. The two equations must denote the same
and hence x — vt must be proportional to x' . We set

ax' = X — vt.

According to the principle of relativity, however, both

systems are fully equivalent. Thus we may equally well

apply the same argument to the motion of the origin of S

relative to S', except that now the relative velocity v has the

reverse sign. Therefore x' -f- vt' must be proportional to x,

and, on account of the equivalence of both systems, the factor

of proportionality a will be the same in each case :

ax = x' + vt'

.

From this and the preceding equation t' may be expressed

in terms of x and t. We get

Vt' = ax - X' = ax - °LzJ* = T
{(a 2 - i) X + vt)

a a

thus

at' = a2 ~~ 1
X + t.

v
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This equation, combined with the first, allows %' and /'

to be calculated when x and t are known. The factor of pro-

portionality a is as yet indeterminate, but it must be chosen

so that the principle of the constancy of the velocity of light

remains preserved.

The velocity of a uniform motion is represented in the

system S by U = - and in the system S' by U' = -. If we

divide the two equations which allow %' and t' to be expressed

by x and t into each other, the factor a cancels, and we find

TT
, x' x — vt

V

If we divide the numerator and the denominator on the right

x
by t and introduce U = - we get

t

u'= ,

u - p
. . • (70)

If, in particular, we are concerned with the uniform motion

of a ray of light along the *-axis then, by the principle of the

constancy of the velocity of light, we must have v = U', and

the value of each is that of the velocity of light c. If, then,

we set U = c and at the same time U' = c, we must have

C = -
C ~ V

or
a^ I

c* + c = c - v.

^Llc + i
V

Hence it follows that

a*-i=--= -p 2 or a 2 + /3
2 =I.

c 2

This gives us the factor of proportionality a, namely

a = jT^pi . . . (71)

The transformation formulae now become

ax' = X - vt at' = - ^ x + t.

v

We shall write them down once again in full, adding the
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co-ordinates y and z that are perpendicular to the direction of

motion and that do not change :

v

*'=-*==Jl y'=y *' = * r-'-Z^L (72)

These rules, according to which the place and time of a

world-point in the system S' may be calculated, are said to

constitute a Lorentz transformation. They are exactly the same
formulae as Lorentz found by difficult arguments involving

Maxwell's field equations (see V, 15, p. 186).

If we wish to express x, y, z, t by means of x'
,
y' , z' , t' we

must solve the equations. We can deduce from the equiva-

lence of both systems S and S' without calculation that the

formulae given by solution must have the same forms except

that v becomes changed into — v. A calculation shows that,

actually

y = y z = z t =

V1 - % V c-

Particular interest attaches to the limiting case in which
the velocity v of the two systems becomes very small in com-
parison with the velocity of light. We then arrive directly

at the Galilei transformation [formula (29), p. 65]. For if -

can be neglected in comparison with 1, we get from (72)

x' = x — vt y' = y z' = z t' = t.

This helps us to understand how, on account of the small

value that — has in most practical cases, Galilean and Newtonian
c

mechanics satisfied all requirements for some centuries.

3. Geometrical Representation of Einstein's Mechanics

Before we seek to interpret the content of these formulae

we shall interpret the relationships which they exhibit between
two inertial systems according to the manner introduced by
Minkowski, namely, geometrically, in the four-dimensional

world xyzt. In doing so we may leave the co-ordinates y, z,

that remain unchanged, out of the question and restrict our-

selves to a consideration of the .^-plane. All kinematical laws,
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then, appear as geometrical facts in the ^-plane. The reader

is, however, strongly advised to practise translating the rela-

tionships obtained in geometrical form back into the ordinary

language of kinematics. Thus, a world-line is to be taken as

denoting the motion of a point, the intersection of two world-

lines the meeting of the two moving points, and so forth. It

is possible to simplify the processes represented in the figures

by taking a ruler, passing it along the £-axis parallel to the #-axis,

and keeping in view the intersections of the edge of the ruler

with the world-lines. These points, then, move to and fro

on the edge and give a picture of the progress of the motion in

space.

As we have seen, every inertial system S (VI, i, p. 197) is

represented by an oblique set of axes in the ^-plane. The

fact that one among them is rectangular must be regarded

as an accidental circum-

stance and plays no parti- + *• v£
cular part.

Every point in space may
be regarded as the point of

origin of a light-wave which S^^ x
spreads out spherically and
uniformly in all directions.

Of this spherical wave only

two light-signals are present

which pass along the ^-direc-

tion here alone taken into

consideration. One of these

moves to the left, the other

to the right. Thus they are

represented in the #/-plane by two intersecting straight lines

which are, of course, entirely independent of the choice of the

position of reference, since they connect time events, world-

points, with each other, namely, the points of space reached

successively by the light-signal.

We draw these light-lines for a world-point which is at

the same time to be the origin of all the ^-co-ordinate systems

considered, and, indeed, we draw them as two mutually per-

pendicular straight lines. We choose these as the axes of an

^-co-ordinate system (Fig. 114).

This brings to view one of the chief characteristics of Ein-

stein's theory. The ^-system is uniquely determined and

fixed in the " world," although its axes are not straight lines

in space but are formed by world-points which are reached by

a light-signal emitted from the origin. This invariant or

" absolute " co-ordinate system is thus highly abstract in its
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nature. We must accustom ourselves to seeing such abstrac-

tions in the modern theory replace the concrete idea of the
ether. Their strength lies in the fact that they contain nothing
that goes beyond the conceptions necessary to interpret the
results of experience.

The calibration curves which cut off the units of length and
time from the axes of an arbitrary inertial system xt must be
rigidly connected with this absolute system of reference £77.

These calibration curves must be represented by an invariant

law and the question is to find it.

The light-lines themselves are invariant. The f-axis (rj = o)

is represented in a system of reference S by the formula x = ct,

and in another system of reference S' by the formula x' = ct'

,

for these formulae express that the velocity of light has the

same value in both systems. Now we shall transform the

difference x' — ct' which is equal to zero for the points of the

77-axis into terms of the co-ordinates x, t by means of the Lorentz
transformation (72). It then follows that

x' - ct' =
a

-2K+3-* +3)
= l±&{x - ct).

a

From this we see that when x — ct = o, so is x' — ct' = 0.

For the 77-axis ($ = o), x = — ct, and x' = — ct'. If we
carry out the corresponding transformation from x' and ct'

in terms of x, t, we have only to change c into — c and jS into

— p in the above (whereas a = ^1 — j8
2 remains unchanged)

and we get

x' + ct' = 1—-P{x + ct).

a

Out of these formulae we easily read an invariant form.

For (1 + ft (1 — 0) = 1 — j8* = a 2
, hence if we multiply the

two equations the factor becomes 1 and we find that

(x' — ct') (x' + ct') = (x — ct) (x + ct)

or

x'* - cH' 2 = x 2 - c
2
t
2

that is, the expression

G = x 2 -cH 2 .... (73)

is an invariant. On account of its fundamental character we
call it the ground invariant.
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It serves in the first place for determining the units of

length and time in an arbitrary system of reference S.

To do this we enquire what are the world-points for which
G has the value + i or — i.

Clearly G = i for the world-point % = I, t = o. But
this is the end-point of a scale of unit length whose other end
is applied to the origin at the moment t = o. As this holds

in the same way for all systems of reference S, we recognize

that the world-points for which G = i define the stationary

unit of length for any arbitrary system of reference, as we
shall presently show in greater detail.

In the same way G = — i for the world-point x = o,

t = . Thus this world-point is correspondingly connected
o

with the unit of time of the clock which is at rest in the system S.

Now, it is very easy to construct the points G = + i, or

G = — i geometrically by starting from the invariant co-ordinate

system £77. The £-axis is formed by the points for which

77 = o. On the other hand, the same world-points are char-

acterized in any arbitrary inertial system S by the relation

x = ct. Hence 77 must be proportional to x — ct. By choosing

the unit of 77 appropriately, we may set

77 = x — ct.

In the same way by considering the 77-axis we find that we may
set

f = X + ct.

Then we have

£q = (x — ct) {x + ct) = x 2 - c 2
t
2 = G.

G = £77 clearly denotes the content of a rectangle with the

sides £ and 77. If we wish to find a world-point for which
G = 77£ = 1, we have only to choose a rectangle of unit area

formed by the co-ordinates f , 77. All these rectangles are clearly

exposed to view. They include the square whose side is unity
;

the others are higher in proportion as they are narrower, and
lower in proportion as they are wider, in agreement with the

condition 77 = - (Fig. 115). The points £, 77 clearly form a
£

curve which approaches the £- and the 77-axis more and more
closely. This curve is called an equilateral hyperbola. If $

and 77 are both negative, $ . 77 is positive. Hence the construction

gives us a second branch, the image of the first, in the opposite

quadrant.

For G = — 1 the same construction holds as in the other
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quadrants, for which the co-ordinates £ and 7? have different

signs.

The four hyperbolae now form the calibration curves which
we are seeking and by which the units of length and time are

fixed for all systems of reference.

Let the #-axis meet the branch G = -f 1 of the hyperbola
at the points P and P', and the /-axis the branch G = — 1 of

the hyperbola at Q and Q' (Fig. 116).

Through P we draw a parallel to the /-axis and we assert

that this does not cut the right branch G = -f- 1 of the

calibration curve in a second point but just touches it at P.

In other words, we assert that not a single point of this branch
of the calibration lies to the left of the straight line but that

the whole branch runs to the right of it, that is, all its points

have ^-co-ordinates that are greater than the distance OP.

Fig. 115. Fig. 116.

This is actually the case, since for every point of the calibra-
tion curve G = x 2 — cH 2 = 1, we have x 2 — 1 + cH 2

. Thus
x 2 = 1 for the point P of the calibration curve, which at the
same time lies on the #-axis t — o, but for every other point
on the calibration curve x 2 is greater than 1 by the positive
amount cH 2

. Accordingly OP = 1 and for every point of the
right branch of the calibration curve x is greater than 1.

In just the same way it follows that the parallel through P'
to the /-axis touches the left branch of the hyperbola G = 1 at P',

and that the parallels through Q and Q' to the #-axis touch the
branches G = — 1 of the hyperbola at Q and 0'. This clearly

For the point Q lies on the

1 and x — o in the

makes the distance OQ =

curvecalibration

/-axis, thus c 2
t
2 =1, or /

G = x 2 - cH 2 =
- is the value of OQ.
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The two parallels to the /-axis through P and P' meet the

light-lines f, rj in the points R and R\ But the parallels

through O and Q' to the #-axis pass through the same points.

For the point R, for example, we have x = ct, because it lies

on the f-axis, and x = i because it lies on the parallel to the

/-axis through P. From this it follows that t = -, that is,

R lies on the parallel to the #-axis through Q.

Now we see that this construction of the #-axis agrees with

that previously given (p. 201), involving simultaneous world-

points. For the /-axis OQ and the two parallels PR and P'R'

are the world-lines of three points, one of which, O, lies midway
between the other two. P, P\ Now if a light-signal be sent

out from O in both directions, it will be represented by the

light-lines f , % and hence cuts the two external world-lines in

R and R'. Consequently, these two world-points are simul-

taneous, their connecting line is parallel to the #-axis, exactly

as given by our new construction.

We condense the result of our reflections into the following

short statement

:

The axes x and t of a system of reference S are so situated

with respect to each other that each is parallel to that straight

line which is touched by the calibration curve at the point of inter-

section with the other axis.

The unit of length is represented by the distance OP.
The unit of time is determined by the distance OQ, which

does not denote 1 sec. but - sec.
c

Every world-line that meets the branches G = 1 of the

calibration curve may be taken as the #-axis. The /-axis is

then fixed as a parallel to the straight line which touches at P.

In the same way the /-axis, too, may be chosen as an arbitrary

world-line meeting the curves G = — 1 of the calibration

curves. The corresponding #-axis is uniquely determined by
the analogous construction.

These rules take the place of the laws of classical kine-

matics. There the #-axis was the same for all inertial systems,

the unit of length was given on it as fixed, and the unit of time

was equal to the section, cut off by a definite straight line

parallel to the x-axis from the /-axis which is in general oblique

(see p. 66, Fig. 41).

Now, how does it happen that these apparently so different

constructions can actually scarcely be distinguished ?

This is due to the enormously great value of the velocity

of light c, if we measure the latter in cms. and seconds. For if

we wish to represent 1 sec. and 1 cm. in the figure by lines
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of the same length, we must obviously compress the diagram

in the direction of t, so that all distances parallel to the /-axis

are shortened in the ratio i : c. If c were equal to 10, the

picture given would be something like that depicted in Fig. 117.

The two light-lines would form a very sharp angle representing

the freedom of play of the #-axes, and, on the other hand,

the angular space

of the /-axes would
become very great.

The greater the

value of c the more
prominently the

quantitative differ-

ence between the

ranges of free-play

of the x- and the

/-direction comes
into evidence. For

the real value of c, namely, c = 3 . io10 cms. per sec. the

drawing could not be executed on the paper at all : both

light-lines would coincide in practice, and the ^-direction which

always lies between them would thus be constant. This is

exactly what ordinary kinematics assumes. Hence we see that

this is a special case or, rather, a limiting case of Einstein's

kinematics, namely, that for which the velocity of light is

infinitely great.

4. Moving Measuring-rods and Clocks

We shall now answer the simplest questions of kinematics,

which concern the measurement of the length of one and the

same measuring-rod and of the duration of one and the same
time in different systems of reference.

Let a rod of unit length be placed at the origin of the system

S along the #-axis. We enquire what its length is in the

system S'. It is at once evident that it will not also be equal

to 1. For the observers moving with S' will, of course, measure

the positions of the end-points of the rod simultaneously, that

is, simultaneously in the system of reference S'. But this

does not mean simultaneously in the system of reference S.

Thus, even if the position of one end of the rod is read off

simultaneously in S and S', that of the other end will not be

read off simultaneously with respect to the S-time by the

observers of the systems S and S\ In the meantime, rather,

the system S' has moved forward, and the reading of the S'-

observers concerns a displaced position of the second end of

the rod.
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>x

At first sight this matter seems hopelessly complicated.

There are opponents of the principle of relativity, simple

minds, who, when they have become acquainted with this

difficulty in determining the length of a rod, indignantly

exclaim : "Of course, everything can be derived if we use

false clocks. Here we see to what absurdities blind faith in

the magic power of mathematical formulae leads us," and then

they condemn the theory of relativity at one stroke. Our
readers will, it is hoped, have grasped that the formulae are

by no means the essential feature, but that we are dealing

with purely conceptual relationships, which can be under-

stood quite well without mathematics. Indeed, we might do
not only without the formulae but also without the geometrical

figures and present the whole thing in ordinary words, but then

this book would become
so diffuse and so impos- l* t\

sible of design that no
one would publish it and
no one could be found to

read it.

We first use our figure

in the ^-plane to solve

the question of determin-

ing the length of the rod

in the two systems S and
S' (Fig. 118).

The rod is supposed at

rest in the system S (x, t) .

Accordingly the world-

line of its initial point is

the ^-axis and of its end
point is the straight line

parallel to this at the distance i ; the latter touches the cali-

bration curve at the point P. Hence the whole rod is repre-

sented for all times by the strip between these two straight

lines.

Now its length is to be determined in the system S' (x, t'),

which is moving with respect to S. Thus its f-axis is inclined

to the 2-axis. We find the corresponding *'-axis by drawing

the tangent at the point of intersection Q of the *'-axis with the

calibration curve and then draw the parallel OP' to this tangent

through O. The distance OP' is the unit of length on the

*'-axis. The length of the rod of unit length at rest in the

system S as measured in the system S' is, however, determined

by the distance OR' which the parallel strip representing the

rod cuts out of the %'-axis. This is clearly shorter than OP',

Fig. i i 8.
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thus OR' is less than i, and hence the rod appears shortened

in the moving system S'.

This is exactly the contraction devised by Fitzgerald and
Lorentz to explain Michelson and Morley's experiment. Here
it appears as a natural consequence of Einstein's kinematics.

If, conversely, a rod at rest in the system S' is measured
from the system S, it evidently likewise appears contracted

and not lengthened. For such a rod is represented by the

strip which is bounded by the £'-axis and the world-line parallel

to it through the point P'. But the latter meets the unit

distance OP of the system S in an internal point R, so that

OR is smaller than i.

Thus the contraction is reciprocal, and this is what the

theory of relativity demands. Its magnitude is best found
with the help of the Lorentz transformation (72).

Let l be the length of the rod in the system of reference

S' in which it is at rest ; l is called the statical length or proper

length of the rod.

Now, if the length of the rod is to be ascertained as it

appears to an observer at rest in the system S, we must set

t = o, which expresses the fact that the position of both
ends of the rod are read off simultaneously with regard to S.

Then it follows from the first equation of the Lorentz trans-

formation (72) that

x =

Now, for the initial point of the rod x — o, and hence also

x' = 0. For its final point x' = l , and if x = / denotes the

length of the rod as measured in the system S, we get

1 = 1*V1 -^ •
• • (74)

This states that the length of the rod in the system S appears

shortened in the ratio ^/i _ £2 . i, exactly in agreement

with the contraction hypothesis of Fitzgerald and Lorentz

(V, 15, p. 187).

The same reflections apply to the determination of an
interval of time in two different systems S and S'.

We suppose clocks that go at the same rate to be placed

at each of the space-points of the system S. These have a

definite position of the hands with respect to S at the same
moment. The position / = o is represented by the world-
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points of the *-axis, and the position / = - by the world-
C

points of the straight line which passes through the point Q
and is parallel to the *-axis (Fig. 119).

Suppose a clock, which also indicates V = o when / = o, to
be placed at the origin of the system S'. We next enquire
what position the hands of a clock of the system S has whir])
is at the point where the clock at rest in S' exactly indicates

the time V = -
. The required value of t is evidently deter-

mined by the intersection Q' of the f-axis with the calibration

curve G = — 1. On the other hand the position t = I of the
c

hands of the clocks at

rest in S is represented
by the points of the
straight line which is

drawn through Q
parallel to the #-axis.

This straight line

meets the /'-axis at a
point R', and the
figure shows that Q'

lies outside the dis-

tance QR'. This, how-
ever, denotes that the
unit of time of the
system S' appears
lengthened in the
system S.

To ascertain the
amount of the
lengthening we set x' = o in the Lorentz transformation for the
clock situated at the origin of S', that is, x = vt. We then get

Fig.

v-
. / v'

P = W 1 - 7,

An interval of time t in the system S
r

, that is, V = t , will

accordingly be measured in the system S as

* =
v*-s

• (75)

M
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and thus appears lengthened. The time-dilatation is reciprocal

to the contraction in length.

Conversely, of course, the unit of time of a clock at rest in

the system S appears increased in the system S'.

Or we may say that, viewed from any one system, the
clocks of every other system moving with respect to it appear
to be losing time. The course of events in time in the systems
in relative motion are slower, that is, all events in a moving
system lag behind the corresponding event in the system
regarded at rest. We shall return later to the consequences
which arise from this fact and which are often regarded as

being paradoxical.

The time-datum of a clock in the system of reference in

which it is at rest is called the proper time of the system.
This is identical with the " local time " of Lorentz. The
progress made by Einstein's theory is not in respect of formal
laws but rather of the fundamental view of them. Lorentz
made the local time appear as a mathematical auxiliary quantity
in contrast to the true absolute time. Einstein established

that there is no means of determining this absolute time or

of distinguishing it from the infinite number of equivalent
local times of the various systems of reference that are in

motion. But this signifies that absolute time has no physical

reality. Time-data have a significance only relatively to

definite systems of reference. This completes the relativization

of the conception of time.

5. Appearance and Reality

Now that we have become acquainted with the laws of

Einstein's kinematics in the double form of figures and formulae,

we must throw a little light on it from the point of view of the
theory of knowledge.

It might be imagined that Einstein's theory furnishes no
new knowledge about things of the physical world but is con-
cerned only with definitions of a conventional type which do,

indeed, satisfy the facts but might equally well be replaced by
others. This suggests itself to us if we think of the starting-

point of our reflections, the example of the tug, in which the
conventional and arbitrary nature of Einstein's definition of

simultaneity forces itself on our attention. As a matter of

fact, Einstein's kinematics can be applied in its entirety to

ships that move through motionless air if we use sound signals

to regulate the clocks. The quantity c would then denote the
velocity of sound in all formulae. Every moving ship would
have its own units of length and time according to its velocity,
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and the Lorentz transformations would hold between the
measure systems of the various ships. We should have before
us a consistent Einsteinian world on a small scale.

But this world would be consistent only so long as we admit
that the units of length and time are to be restricted by no
postulate other than the two principles of relativity and the
constancy of the velocity of sound or light respectively. Is

this the meaning of Einstein's theory ?

Certainly not. Rather it is assumed as self-evident that a
measuring-rod which is brought into two systems of reference
S and S' under exactly the same physical conditions in each
case represents the same length in them, it being assumed
that they are affected as little as possible by external forces.
A fixed rod that is at rest in the system S and is of length i

is, of course, also to have the length i in the system S' when
it is at rest in S' provided that the remaining physical conditions
(gravitation, position, temperature, electric and magnetic
fields, and so forth) are as much as possible the same in S'

as in S. Exactly the same would be postulated for the clocks.
We might call this tacitly made assumption of Einstein's

theory the " principle of the physical identity of the units
of measure."

As soon as we are conscious of this principle we see that
to apply Einstein's kinematics to the case of the ships and to
compare clocks with sound signals is incompatible with it.

For if the units of length and time are determined according
to Einstein's rule with the help of the velocity of sound, they
will, of course, by no means be equal to the units of length
and time measured with fixed measuring rods and ordinary
clocks

; for the former are not only different on every moving
ship according to its velocity but, moreover, the unit of length
in the direction of motion is different from that athwart the
ship. Thus Einstein's kinematics would be a possible definition
but in this case not even a useful one. The ordinary measuring
rods and clocks would without doubt be superior to it.

For the same reason it is only possible with difficulty to
illustrate Einstein's kinematics by means of models. These
certainly give the relationships between the lengths and the
times in the various systems correctly, but they are inconsistent
with the principle of the identity of the units of measure

;

nothing can be done but to choose two different scales of length
in two systems S and S' of the model moving relatively to each
other.

According to Einstein the state of affairs is quite different
in the real world. In it the new kinematics is to be valid
just when the same rod and the same clock are used first in the
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system S, and then in the system S' to fix the lengths and the
times. Through this, however, Einstein's theory rises above
the standpoint of a mere convention and asserts definite

properties of real bodies. This gives it its fundamental im-
portance for the whole physical view of nature.

This important circumstance comes out very clearly if

we fix our attention on Romer's method of measuring the

velocity of light with the help of Jupiter's moons. The whole
solar system moves relatively to the fixed stars. If we imagine
a system of reference S rigidly connected with the latter, then
the sun and its planets define another system S'. Jupiter and
his satellites form a clock (ideally good) with hands. It

moves round in a circle so that at one time it arrives at the

direction of the relative motion of S with respect to S', at

another in the opposite direction. We can by no means
arbitrarily determine the beating of the Jupiter clock in these

positions by convention in such a way that the time that the

light takes to traverse the diameter of the earth's orbit is the

same in all directions, but rather this is so quite of itself, thanks
to the way the Jupiter clock is arranged. For it just shows
the proper time of the solar system S' and not some absolute

time or the foreign time of the system S of the fixed stars.

In other words, the time of revolution of the Jupiter moons is

constant relatively to the solar system (the velocity of Jupiter

himself relative to the solar system being left out of account).

Now it is asserted by some that this view denotes a trans-

gression of the causal law. For if one and the same measuring
rod, as judged from the system S, has a different length

according as it is at rest in S or moving relatively to S
then, so these people say, there must be a reason for this

change. But Einstein's theory gives no reason ; rather it

states that the contraction occurs of itself, that it is an accom-
panying circumstance of the fact of motion. Now, this

objection is not justified. It is due to a too limited view of

the conception " change." In itself such a conception has no
meaning. It denotes nothing absolute, just as data denoting
sizes or times have no absolute significance. For we do not
mean to say that a body which is moving uniformly rectilinearly

with respect to an inertial system S " undergoes a change
"

although it actually changes its situation with respect to the

system S. It is by no means clear a priori what " changes
"

physics counts as effects for which causes are to be found
;

rather, this is to be determined by experimental research

itself.

The view of Einstein's theory about the nature of the con-

traction is as follows :
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A material rod is physically not a spatial thing but a space-

time configuration. Every point of the rod exists at this

moment, at the next, and still at the next, and so forth, at

every moment of time. The adequate picture of the rod

under consideration (one-dimensional in space) is thus not

a section of the *-axis but rather a strip of the #/-plane

(Fig. 120). The same rod, when at rest in various moving
systems S and S' is represented by various strips. There is

no a priori rule as to how these two-dimensional configurations

of the ^-plane are to be drawn so that they may represent

the physical behaviour of one and the same rod at different

velocities correctly. To achieve this a calibration curve in

the ^-plane must first be fixed. Classical kinematics draws
this differently from Einsteinian kinematics. It cannot be
ascertained a priori which is correct. In the classical theory

both strips have the same width as measured parallel to a

fixed #-axis. In Einstein's ,/

theory they have the same
width as measured in the

various ^-directions of the

systems of reference in rela-

tive motion and with differ-

ent but determinate units.

The " contraction " does

not affect the strip at all

but rather a section cut

out of the #-axis. It is,

however, only the strip as

a manifold of world-points,

events, which has physical reality, and not the cross-section.

Thus the contraction is only a consequence of our way of

regarding things and is not a change of a physical reality.

Hence it does not come within the scope of the conceptions of

cause and effect.

The view expounded in the preceding paragraph does away
with the notorious controversy as to whether the contraction

is " real " or only " apparent." If we slice a cucumber, the

slices will be the larger the more obliquely we cut them. It is

meaningless to call the sizes of the various oblique slices " ap-

parent," and to call, say, the smallest which we get by slicing

perpendicularly to the axis the " real " size.

In exactly the same way a rod in Einstein's theory has
various lengths according to the point of view of the observer.

One of these lengths, the statical length, is the greatest, but

this does not make it more real than the others. The applica-

tion of the distinction between " apparent " and " real " in

Fig. 120.
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this naive sense is no more reasonable than asking what is the

real #-co-ordinate of a point x, y when it is not known which

#y-co-ordinate system is meant.

Exactly corresponding remarks apply to the relativity of

time. An ideal clock has always one and the same rate of

beating in the system of reference in which it is at rest. It

indicates the " proper time " of the system of reference. Re-

garded from another system, however, it goes more slowly.

In such a system a definite interval of the proper time seems

longer. Here, too, it is meaningless to ask what is the " real
"

duration of an event.

When understood in the right way, Einstein's kinematics

contains no obscurities and no inconsistencies. But many of

its results appear contrary to our customary forms of thought

and to the doctrines of classical physics. When these antitheses

occur in a particularly marked way they are often felt to be

impossible and paradoxical. In the sequel we shall draw

numerous deductions from Einstein's theory which first en-

countered violent opposition until physicists succeeded in

confirming them experimentally. But here we wish to deal

with an argument which leads to particularly remarkable

results without its seeming possible to test them by experiment.

We are referring to the so-called " clock-paradox."

Let us consider an observer A at rest at the origin O of the

inertial system S. A second observer B is at first to be at

rest at the same point O, and is then to move off with uniform

velocity along a straight line, say the #-axis, until he has reached

a point C, when he is to turn round and return to along a

straight line with the same velocity.

Let both observers carry with them ideal clocks which

indicate their proper-time. The times lost in getting started,

in turning round, and in slowing down on arrival at B can be

made as short as we please by making the times occupied

in moving uniformly there and back sufficiently great. If,

say, the rate of the clocks should be influenced by the accelera-

tion, this effect will be comparatively small if the times of the

journey are sufficiently great, so that this effect may be neglec-

ted. But then the clock of the observer B must have lost

time compared with the clock of A after B's return to O. For

we know (VI, 4, p. 210) that during the periods of B's uniform

motion, which are the determining factors for the result, the

proper time lags behind the time of any other inertial system.

This is seen particularly vividly in the geometrical picture

in the ^-plane (Fig. 121). In this we have for the sake of

convenience drawn the axes of the ^-system perpendicularly

to each other. The world-line of the point A is the £-axis.
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The world-line of the point B is the bent line OUR (drawn as a
dotted line) whose corner U lies on the world-line of the turning-

point C drawn parallel to the /-axis.

Through U we draw the hyperbola that arises out of the

calibration curve G = i by the appropriate magnification.

Let this meet the /-axis in Q. Then clearly the length OQ
of the proper time for the observer A is exactly equal to the

length OU of the proper time for the observer B. But the

length of the proper time for A until the turning-point R is

reached is, as the figure tells us, more than twice as great as

00, whereas it is twice

as great as OU for B.

Thus, at the moment
of turning round, A's

clock is in advance of

B's clock. The amount
of this advance can
easily be calculated

from formula (75), in

which t is the proper-

time of A, and t denotes

the time measured in

the system B. If we
limit ourselves to small

velocities of B and re-

gard P = - as a small
c

number, we may write as an approximation instead of (75) (see

the note on p. 182) :

* = *,(i+iJ3»).

Hence the advance of A's clock with respect to B's clock is

Fig. 121.

t-L = ¥t (76)

and this holds for every moment of the motion since the out-

ward and the inward journey take place with the same velocity

Hence, in particular, it also holds for the moment of turning,

t then denoting the whole time of the voyage according to

the proper time of A, and t the time of the voyage according
to the proper time of B.

The paradoxical feature of this result lies in the circumstance
that every inertial event in the system B must take place more
slowly than the same event in the system A. All atomic
vibrations, indeed, even the course of life itself, must behave
just like the clocks. Thus, if A and B were twin brothers,
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then B must be younger when he returns from his voyage

than A. This is truly a strange deduction, which can, however,

be eliminated by no artificial quibbling. We must put up
with this just as, some centuries ago, others had to endure

that their fellow-creatures in the antipodes stood on their heads.

Since, as formula (76) shows, it is an effect of the second order, it

is scarcely likely that practical consequences will accrue from it.

If we take up arms against this result and call it para-

doxical, we simply mean that it is unusual, or " peculiar,"

and time will help us to conquer this strange feeling. But
there are also opponents to the theory of relativity who seek

to make of these conclusions an objection against the logical

consistency of the theory.

Their argument is as follows. According to the theory of

relativity two systems in relative motion are equivalent.

We may therefore also regard B as at rest. A then performs

a journey in exactly the same way as B previously, but in the

opposite direction. We must therefore conclude that when
A returns B's clock is in advance of A's. But previously we
had come to exactly the opposite conclusion. Now since

A's clock cannot be in advance of B's and at the same time

B's in advance of A's, this argument discloses an inherent

contradiction in the theory—so they conclude superficially.

The error in this argument is obvious ; the principle of rela-

tivity concerns only such systems as are moving uniformly

and rectilinearly with respect to each other. In the form in

which it has been so far developed it is not applicable to accel-

erated systems. But the system B is accelerated and it is not,

therefore, equivalent to A. A is an inertial system, B is

not. Later, it is true, we shall see that the general theory of

relativity of Einstein also regards systems which are accelerated

with respect to each other as equivalent, but in a sense which

requires more detailed discussion. When dealing with this

more general standpoint we shall return to the " clock paradox
"

and we shall show that on close examination there are no
difficulties in it. For in the above we made the assumption

that for sufficiently long journeys the short times of acceleration

exert no influence on the beating of the clocks. But this holds

only when we are judging things from the inertial system A
and not for the measurement of time in the accelerated system

B. According to the principles of the general theory of rela-

tivity gravitational fields occur in the latter which affect the

beating of the clocks. When this influence is taken into

account, it is found that under all circumstances B's clock

goes in advance of A's, and thus the apparent contradiction

vanishes (see VII, 10, p. 282).
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The relativization of the conceptions of length and intervals

of time appears difficult to many, but probably only because

it is strange. The relativization of the conceptions " below
"

and " above " which occurred through the discovery of the

spherical shape of the earth probably caused contemporaries

of that period no less difficulty. In this case, too, the result

of research contradicted a view that had its source in direct

experience. Similarly, Einstein's relativization of time seems

not to be in accord with the experience of time of individuals.

For the feeling of " now " stretches without limit over the world,

linking all being with the ego. The fact that the same moments

that the ego experiences as " simultaneous " are to be called

" consecutive " by another ego cannot be comprehended in

fact by the actual experience of time. But exact science has

other criteria of truth. Since absolute " simultaneity " cannot

be ascertained, it has to eradicate this conception out of its

system.

6. The Addition of Velocities

We shall now enter more deeply into the laws of Einstein's

kinematics. In doing so we shall for the most part restrict

ourselves to considering the ^-plane. There is no essential

difficulty in generalizing the theorems obtained for the case

of the four-dimensional #v2/-space and we shall, therefore,

merely touch lightly on it.

The light-lines that are characterized by G = x 2 — c 2
t
2 = o

divide the atf-plane into four quadrants (Fig. 122). G evidently

retains the same values in each quadrant, G being >o in the

two opposite quadrants which contain the hyperbolic branches

G = + 1, and G being <o in the two opposite quadrants

which contain the hyperbolic branches G = — 1. A straight

world-line passing through the origin can be chosen as the

#-axis or the /-axis according as it lies in the quadrants G >o
or G <o. Corresponding to this we distinguish world-lines

as " space-like " or " time-like."

In any inertial system the #-axis separates the world-points

of the "past" (t < 0) from those of the future (t>o). But

this separation is different for each inertial system, since for

another position of the %-axis world-points which previously

lay above the #-axis, that is, in the " future," now lie below

the #-axis, or in the past, and conversely. Only the events

represented by the world-points within the quadrants G < o

are uniquely either " past " or " future " for every inertial

x 2

system. For such a world-point P we have t
2 >—

2
,
that is,
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in every admissible system of reference the time-distance of

the two events O and P is greater than the time the light

requires to pass from the one point to the other. We can

then always introduce an inertial system S such that its 2-axis

passes through P, that is, in which P represents an event which

takes place at the spatial origin. Regarded from another

inertial system this inertial system S will move rectilinearly

and uniformly in such a way that its origin coincides exactly

with the events O and P. Then, obviously, for the event P
in the system S, we must have x = o, that is, G = — cH 2 <o.

In every inertial system the 2-axis marks off the world-points

to which events that occur " before " or " behind " (after) the

spatial origin on the #-axis. But for a different inertial system

with a different 2-axis this demarcation will be a different one.

It is uniquely determined

only for the world-points

that lie within the quad-

rants G > o, whether they

lie " before " or " behind
"

the spatial origin. For
such a point P we have

t
2 <-. that

c 2
is, in every

Fig. 122.

admissible system of refer-

ence the time-interval be-

tween two events O and P
is less than the time the

light takes to pass from one

to the other. Then we can

introduce an appropriate

moving inertial system S,

whose x-2lxis passes through P, in which both events O and

P are simultaneous. In this system we evidently have for the

event P that t = o, and thus G = x 2 > o.

From this it follows that the invariant G is for every world-

point P a measurable quantity, having a significance which

we can appreciate visually ; P either allows itself to

transformed " for the same place " with O ; then G = — c

where t is the difference of time of the event P with respect

to the event O which occurs at the same point of space of the

system S ; or else P may be transformed with O " for simultaneous

times," and then G = x 2
, where x is the spatial distance

between the two events that occur in the system S.

In every co-ordinate system the light-lines G = o represent

motions which occur with the velocity of light. Accordingly,

corresponding to every time-like world-line there is a motion

be
2
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of lesser velocity. Every motion which occurs with a velocity

less than that of light can be " transformed to rest " because

there is a time-like world-line corresponding to it.

But what holds for motions that occur with a velocity

greater than that of light ?

After the preceding remarks it would seem clear that

Einstein's theory of relativity must pronounce such motions

to be impossible. For the new kinematics would lose all

meaning if there were signals which allowed us to control the

simultaneity of clocks by means involving a velocity greater

than that of light.

Here a difficulty appears to arise.

Let us assume that a system S' has a velocity v with respect

to another system S. Let a moving body K move relatively

to S' with the velocity u' . According to ordinary kinematics

the relative velocity of the body K with respect to S is then

u = v -f u'

.

Now, if v, as well as u, is greater than half the velocity of

light, then u = v -\- u' is greater than c, and this is to be im-

possible according to the theory of relativity.

This contradiction is due, of course, to the circumstance

that velocities cannot simply be added in the kinematics of

the principle of relativity, in which every system of reference

has its own units of length and time.

We already see from this that in any two systems moving
with respect to each other the velocity of light always has the

same value. It is just this fact that we used earlier to derive

the Lorentz transformation (VI, 2, p. 198), and the formula

established on p. 199 gives us the correct law for the composition
v 2

of velocities if we introduce a 2 — i = /3
2 = — into it. We

find it preferable to derive this rule once again from the Lorentz-

transformation (72), p. 200. To do this we divide the expres-

sions for x' and y' (or z') by the expression for t :

X x — vt V y^l-

t . V t . V
t — —X t — —X

c 2
c-

If we divide the numerators and denominators of the expres-

sions on the right by t, the quotients up = -, us
= -- occur,

t i

which are obviously the projections or components, measured



220 THE THEORY OF RELATIVITY

in the system S, of the velocity of the body K parallel (longi-

tudinal) or perpendicular (transversal) to the direction of motion
x'

of the system S' with respect to S. The quotients u' v =
V.

yu' s
= 4- have the same meaning with respect to the system S'.

t

Accordingly we get the following Einstein Addition Theorem
of Velocities :

/7TZ
u, up -v u>

a
= U8l cl

. (77)

which takes the place of the simple formulae of the old kine-

matics :

u' p = up — v u'
s
= u9 .

If, in particular, we are dealing with a light-ray which is

travelling in the direction of motion of the system S' with
respect to S, then us

= o, up = c. And then formula (77)
gives the expected result

:

, c — v ,u v = = c u s
=

V
I — -

c

which expresses the theorem of the constancy of the velocity

of light. Moreover, we see that for any body moving longitud-
inally u' 9 < c, so long as uP < c. For if we replace uv in

the first formula (yy) by the greater value c, the numerator
is increased and the denominator diminished, so that the
fraction becomes greater and we get

, ^ c — v , ^u p < or u -< c.

c

The corresponding result holds, of course, for transversal

motion, and, indeed, for motion in any direction.

Hence the velocity of light is, kinematically, a limiting

velocity which cannot be exceeded. This assertion of Ein-
stein's theory has encountered much opposition. It seemed
an unjustifiable limitation for future discoverers who wished
to find motions which occurred with velocities greater than
that of light.

We know that the jS-rays of radioactive substances are

electrons moving nearly with the velocity of light. Why
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should it not be possible to accelerate them so that they move
with a velocity exceeding that of light ?

Einstein's theory, however, asserts that in principle this

is not possible, because the inertial resistance or the mass of

a body increases the more the more nearly its velocity ap-
proaches that of light. We thus arrive at a new system of
dynamics which is built up on Einstein's kinematics.

7. Einstein's Dynamics

The mechanics of Galilei and Newton is intimately con-
nected with the old kinematics. The classical principle of

relativity, in particular, depends on the fact that changes of

velocity, accelerations, are invariant with respect to Galilei

transformations.

Now we cannot take one kinematics for one part of physical
phenomena and the other kinematics for the other part, namely,
invariance with respect to Galilei transformations for mechanics,
and invariance with respect to Lorentz transformations for

electrodynamics.

We know that the former transformations are a limiting

case of the latter and are characterized by the constant c

having infinitely great values. Accordingly, following Einstein,

we shall assume that classical mechanics is not strictly valid

at all but rather requires modifying. The laws of the new
mechanics must be invariant with respect to Lorentz transforma-
tions.

In setting up these laws we must decide which fundamental
laws of classical mechanics must be retained and which must
be rejected or modified. The fundamental law of dynamics
with which we started is the law of momentum, expressed by
formula (7) (II, 9, p. 31), namely :

J = mw.

It is obvious that we cannot simply retain it in this form.
For, whereas in classical mechanics the change of velocity w for

various inertial systems has always the same value (see III,

5, p. 60), this is not the case here, on account of Einstein's

Addition Theorem of Velocities (yy). Thus the formula (7)
has no meaning unless special directions are given for the
transformation of the momentum of one system of reference

to another, and hence it would not be expedient to start from
it to reach the new fundamental law by generalization.

But we may certainly start from the law of conservation of
momentum (II, 9, p. 32, formula (9)). This concerns the total

momentum carried along by two bodies, and it states that
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when the bodies collide this momentum remains preserved no
matter how their velocities are changed in the process. Thus
the assertion involves nothing but two bodies that act on each
other, that suffer a mutual impact, without external influences,

and hence there is no reference to a third body or co-ordinate

system. Accordingly we shall demand that this law of con-

servation of momentum still remain valid in the new dynamics.
This is, of course, as we shall see presently, impossible if

we retain the maxim of classical mechanics that mass is a
constant quantity peculiar to each body. Hence we shall

assume from the outset that the mass of one and the same body

is a relative quantity. It is to have different values according

to the systems of reference from which it is measured, or, if

measured from a definite system of reference, according to the

velocity of the moving body. It is clear that the mass with
respect to a definite system of reference can depend only on
the value of the velocity of the moving body with respect to

this system.

Now we consider two systems of reference S and S' which
are moving rectilinearly relatively to each other with the

velocity v. Let there be an observer A on S, and an observer

B on S'. Let these observers be furnished with two exactly

equal spheres. Let the sphere of A have the same mass with
respect to the system S as the sphere of B has with respect

to S', so long as the relative motions are the same.
Now, suppose each observer to throw his ball towards

the other in a direction at right angles to his motion and to

choose the moment of throw so that the spheres meet each
other exactly symmetrically in flight, that is, so that the line

connecting their centres is perpendicular to the direction of

motion of S and S' at the moment of collision.

If we call the longitudinal and transverse component of

the first sphere XJpl and XJS1> and those of the second XJp2 and
Us2 we can express what these quantities measured in one of

the two systems of reference S or S' are before and after the

collision.

The first sphere is thrown by A transversally with respect

to S with a relative velocity U. Hence

17^ = Un =.U . . . (7$)

In the same way B throws his sphere in the opposite direc-

tion with respect to S' with the same relative velocity U.
Hence

iy 2 = o U/ 2 - - U.

Now, by the Addition Theorem (yy), p. 220, we can in each
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case transform these quantities so as to refer them to the

other system. We shall give only the components in the

system S, and we need merely mention that the calculation

for the system S' leads to exactly the same final result, as

must be in view of the symmetry of the whole process. By
inserting the values of U/ 2 and U/ 2 in (77) we get

Up2 = v Us2 = - Uyji -
j£ • (79)

If we now wish to calculate the total momentum before the

impact we find it advantageous not to try to write as equal

the masses of the two equal spheres which are executing dif-

ferent motions. For it at once becomes manifest that they are

necessarily different. Thus, if we designate the masses with

respect to S before the collision by m lt m 2 , then the total im-

pulse before the collision has the components

]p = m1 Upl + m 2 Up2 = m 2 v

1 ~ 7<J, = w, Un + ™ 2 U, 2 = m 1 U - m 2 U^ 1 - -
2

Let us next consider the effect of the collision.

Since it is to take place perfectly symmetrically, the longi-

tudinal velocity, as observed from the system S, cannot change

as a result of the collision, nor can the longitudinal velocity

of the second sphere as observed from the system S'. Indeed,

for reasons of symmetry, the observer A must see his sphere

perform exactly the same motions as B observes his own to

perform. The transverse components of velocity will become

changed through the collision. Let the first sphere, as measured

from S, assume the velocity — U' which is oppositely directed

to its original velocity. Then the second sphere, as observed

from S' must acquire the velocity U' through the impact

which is likewise oppositely directed to its original motion.

Hence, after the collision, we have

U. = - U'l /8t \

u;;=u< I • •

(8l)

and by transforming to the system S by (yy) we get from this

U'„= o

\J Pi
= v U

#I
- U'^x - !| . (82)

If we designate the masses after the collision by mlt m
2 ,
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then the moments of momentum after the collision come out

as

Jp = WjU^ + ma\J9a = m 2v
|

J. = ^iUSl + m 2USi.
= - fh xV + m.U'^/x _ ?} ^

If we compare the momenta before and after the collision

(80) and (83) we get as the conditions that there should be no
change

:

m 9v = M 9v

m,u = »»,uJi - -
%
= - mjr + fc.u'^1 - Ej (84)

Now, if the mass were constant, that is if m x
— m 2 = m x

= m 2 , then the first equation would be identically true, but

the second would lead to an inconsistency. For then it would
follow that

(U + U0(i-^i -^)=o

and this is impossible, since U and v are certainly not equal

to zero.

Hence we must drop the law of classical mechanics that

mass is constant, and we must replace it by the assumption

already made above, that the mass of a body with respect to

a system S depends on the magnitude of its velocity relative

to this system.

We can calculate the value U of the velocity from the com-
ponents Uj, and Ug according to formula (3) (II, 3, p. 24)

According to this we get for the velocities of the two spheres

before the collision

:

(by (78) and (79))

after the collision :

(by (81) and (82))

«•( - 5)
(«5)

Now, the first equation (84) requires that m2
= w 2 . If

mass changes at all with velocity then m2 can equal m 2 only if
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the corresponding velocity u 2 before and after the collision

remains unaltered :

„. + U«(i-^) = »»+U'«(i-^).

From this, however, it follows that U = U'.

Moreover, equations (85) then show that ft, also remains

unaltered by the collision, and hence it follows that m x = mv
Accordingly, the second equation (84) may be written as

follows

:

TT /_ V 2
... TT , „ TT /, V 2

xu = w auy 1 - v~
2
= wxU + w 2Uy 1 -

^
or

/ v 2

>"i- w
a
yi - -

2
= 0.

Hence we get ^1 (85\nh- r- -^ • • • v ;

Now let us suppose the velocity of throw U to be chosen

smaller and smaller. Then by (85) we get finally that », = 0,

u 2
= v. So m x

is the mass which corresponds to the velocity

zero and which we call the statical mass m ,
whereas m 2 is the

mass that corresponds to the velocity v, and we designate it

briefly by m alone (without a suffix). Thus, the following

holds :

m =

v'

mQ
. • • ($7)

1 - -
c

In this way we have found how the relativistic mass depends

on the velocity.

After this it is easy to see that through this relation (87)

the general equation (86) is fulfilled for any velocity of throw

U whatsoever. For, by (85), we have

))! m
m-, =

I
u

x L U2

nu =

V-K V-M- +u'('- 3)
m (

v-U-

1

't

CM c'

from which the relation (86) follows immediately.
15
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As already mentioned we should arrive at exactly the

same result if we were to consider the position from the other

system of reference S'.

For the converted momentum of a body we get

j = mv = -WL= . . . (88)

From this we can pass on to the law of motion for forces

that act continuously. In doing so we must use the formulation

of classical mechanics (II, 10, p. 33) which is based on con-

vected momentum. It may clearly at once be applied to the

new dynamics, but the law for the longitudinal and the trans-

verse component must be formulated separately thus :

A force K produces a change in the converted momentum,
and this is such that the change of the longitudinal or, respectively,

transverse component of momentum per unit of time is equal

to the corresponding component of the force.

The equations of motion may then easily be set up.

If we make a small longitudinal addition wv to the velocity

v, simple calculation * tells us that the longitudinal change in

*For if u , = v -f w. u
s
— w

s

are the components of velocity after the change, then the corresponding components
of momentum are

m (v + w
p
) m w

s

Jb ~ / Js
=

r V2

in which

u = VUp* + u 2 = <J{v + Wp) 2 + ?v
s

%

is the magnitude of the changed velocity. But we may set the latter approximately
equal to the component Up, for

U = Jv2 + 2VWp + Wp 2 + W 2

and if we neglect the squares of Wp and w
s

u = sjv2 + 27tVp =w /yi + 2-i.

Next, we again apply the process used above (see Note on p. 1S2) to derive ap-
proximate formulae. For small values of x

(1 + x) 2 = I + 2x + x2 = I -f 2x (approximately)
and hence

sli+2x=i+x (approximately).

Thus, to a sufficient degree of approximation :

1 1 1

VV8
/ I / 2VW
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J is

m wv

(V- - S)

but if we make a small transversal addition w8 to the v, then

the transverse change of J becomes

m ws

j;zi

These expressions are to be divided by the small time t during

which the change takes place : we thus get the components of

acceleration :

b
> =

W
7

in which we have used the abbreviation a introduced earlier (VI, 2, formula (71),

p. 109). According to the approximate formulae used earlier (Note on p. 182) we
have

J\
1 +$x

and thus we get

V-=?

»- +
2
C*J'

vw

a

Now we get for the components of momentum or impulse after the change, if

we neglect the quadratic members in w. and w
&

:

]p = m o{v + Wp)~

and

-?(-+5)

From these we must subtract the original momenta

]°
P
- m
f J°s " O

and we get for the changes of momentum

which agree with the formulas in the text.
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and for the components offorce we get the expressions

K . .

m
<>
b* K = mA

(89)

{<£=%' '"V-S
The relationship between the force and the acceleration

generated is thus different according as the force acts in the

direction of the acceleration that is already present or in a

direction perpendicular to this.

It is usual to bring these formulae into a form in which they

resemble the fundamental law of classical dynamics (II, 10,

formula (10), p. 33) as much as possible. For this purpose

we set

. (90)

(V-S)' +-\
and we call these quantities longitudinal and transverse mass.

The latter is identical with the quantity m, simply called

relativistic mass above in formula (87).

Then we may write in place of (89)

K„ = mj>9 K
s
= msbs . . (91)

which agrees in form with the fundamental classical law.

We see how necessary it is to define the conception of mass
from the very beginning exclusively by the inertial resistance.

Otherwise it would not be possible to apply it in relativistic

mechanics, since a different expression "mass" comes into ac-

count for the convected momentum, for the longitudinal and the

transverse force, and, moreover, these masses are not character-

istic constants of the body, but depend on its velocity. Thus
the conception of mass in Einstein's dynamics differs very widely

from that to which we are accustomed, and in which mass
denotes quantity of matter in some way. In a certain sense

the statical mass m is a measure of the Einsteinian mass, but

again, unlike the mass of ordinary mechanics it is not, in an
arbitrary system of reference, equal to the ratio of momentum
to velocity or of force to acceleration.

A glance at the formulae (87) and (90) for the mass tells us

that the values of the relativistic mass m (mP or ms respectively)

become greater the more the velocity v of the moving body
approaches the velocity of light. For v = c the mass becomes
infinitely great.

From this it follows that it is impossible to make a body
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move with a velocity greater than that of light by applying

finite forces : its inertial resistance grows to an infinite extent

and prevents the velocity of light from being reached.

Here we see how Einstein's theory becomes rounded off

to a harmonious whole. The assumption that there is a limiting

velocity that cannot be exceeded, which seems almost para-

doxical, is itself required by the physical laws in their new

form.

Formula (87) giving the dependence of the mass on the

velocity is the same as that already found by Lorentz from

electrodynamic calculations for his flattened electron. In it

m was expressed in terms of the electrostatic energy U of the

stationary electron just as in Abraham's theory (V, 13, p. 177,

formula (69)) namely, by

4 U
3 ca

We now see that Lorentz' formula for the mass has a much
more general significance than is at first apparent. It must hold

for every kind of mass, no matter whether it is of electro-

dynamic origin or not.

Recent researches into the deflections of cathode rays

seem to indicate that Lorentz' formula is more correct than

Abraham's. A surprising confirmation of the relativistic

formula for the mass has been obtained in a branch of physics

which seems to be quite foreign to the theory of relativity,

namely, in the spectroscopy of optical and Rontgen rays.

We cannot do more than just touch on these wonderful

relationships. The luminescence of atoms comes about through

electrons within the atomic configuration executing oscillatory

motions and producing electromagnetic waves which are

propagated in all directions. The older theory carried out the

calculations of these phenomena with the help of Maxwell's

field equations, but latterly it has been found necessary to

give up the strict validity of these equations in the interior

of the atom and to assume other laws, which were introduced

by Max Planck (in 1900) for the first time in the theory of

heat radiation. The latter constitute the so-called quantum

theory. Niels Bohr (in 1913) applied it to explain spectra

and achieved great success. Without entering into details we

remark only that in rapid motions of the electrons the mass

must be increased according to the theory of relativity, and

this will exert an influence on the spectra. Sommerfeld (in

19 1 5) was actually able to show that in consequence of

the variability of mass the spectral lines have a complicated

structure. Each line in reality consists of a whole system of
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intense lines with neighbouring fine lines. In the visible

spectra, which are emitted by the outer electrons of the atom,

this group of lines is very narrow, it constitutes a "fine struc-

ture." But in the case of Rontgen spectra that come from the

interior of the atom it is a coarse structure in which the resolu-

tion of the lines is magnified millions of times. The fine

structure calculated by Sommerfeld for the lines of the hydrogen

and the helium spectrum has been observed by Paschen (1916).

In the case of the Rontgen spectra, too, these hypotheses of

Sommerfeld have proved trustworthy. They are so exact

that they allow us to discriminate between the formulae for

the mass given by Abraham and Lorentz, which is a quantity

of the second order in p. Sommerfeld' s pupil, Glitscher, was

able to show, in 1917, that Abraham's formula is not com-

patible with observations of the helium spectrum, but that

Lorentz' formula is in agreement with them. We are thus

justified in speaking of a spectroscopic confirmation of Einstein's

theory of relativity.

Since, by formula (87), every mass depends on the velocity,

the proof of the electromagnetic nature of the mass of the

electron lapses, and with it the relationship between statical

mass and electrostatic energy. With Lorentz' theory of the

stationary ether it was possible to try to trace inertial mass

back to the peculiar property of persistence of the electro-

magnetic field. If Einstein's theory of relativity had had to

give up this great plan everyone who appreciates uniformity

would have regarded it as a serious defect. The new dynamics

has not failed here, however, but has allowed us to penetrate

into the deepest recesses of the nature of inertial mass.

8. The Inertia of Energy

For all practical purposes, and also for the case of the most

rapid electrons, it is sufficient to write down the formula (87)

for the mass as far as members no higher than the second order.

Now, as we have seen (p. 182, footnote), this approximation

gives us

Hence we get

xA-£ :

m = ni t

= i + '/3 2
-

1 V
2 C'

2( +

In ordinary mechanics the kinetic energy (II, 14, p. 44) is
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defined by T = m%

t
". From our formula the expression that

follows for it is

T = c 2 (m - m ).

It can be shown that this definition of kinetic energy is rigor-

ously valid even if the members of order higher than the second

are not neglected.

The energy law (II, 14, formula (16), p. 44) demands that

the time-change (that is, change with respect to the time) ot

energy E = T + U be equal to zero during the whole of the

motion. In the latter expression the classical value T = ~v2

must be replaced by the relativistic value

T = c 2(m - m ) = c
2m

0{

/ v 2

- i\ • (92 )

If we form the time-change of this we get by a calculation

similar to that made above (footnote, p. 226) for longitudinal

acceleration *
:

lime-change olT- "* „.-B> • (M>

in which the longitudinal component of force has been intro-

duced in accordance with (89), p. 228. But the right-hand side

is the negative time-change of the potential energy U. I<or

during a sufficiently small interval of time t the force may be

regarded as approximately constant, and we may calculate as

if we were dealing with a gravitational force whose potential

energy (II, 14, formula (15), p. 42) is equal to Gx
;
we took

* It was shown there that if the velocity v is replaced by the changed value of

u with the components u
p
= v + w

p
, u

s
= w

s
,
the expression

1 1
vto

p
1 = J , passes over into

-J=^
=

a{
1 + rf?

Thus its change is

and the formula in the text follows at once from this.
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the direction of x as opposite to that of gravity, so that we
had to set G = — K v . The time-change of the potential

energy then becomes

D»

Accordingly, equation (93) actually expresses that the

quantity E = T -f- U is constant in time, T denoting the ex-

pression (92).

If we write the formula (92) thus

,

T

it states that the mass differs from its value at rest by the

kinetic energy divided by the square of the velocity of light.

This formulation suggests to us that the statical mass m Q

is related in the same way to the energy content of the resting

body, or that the universal relationship

m = - . . . . (94)
c

holds between mass and energy in all cases. Einstein has

called this law of the inertia of energy the most important result

of the theory of relativity. For it signifies that the two funda-

mental conceptions of mass and energy are identical and thus

gives us a clearer vision of the structure of matter. Before

dealing with this we shall give Einstein's simple proof of

formula (94).

This is based on the fact that radiation exerts a pressure.

From Maxwell's field equations, supplemented by a theorem
first deduced by Poynting (1884), it follows that a light-wave

which falls on an absorbing body exerts a pressure on it. And
it is found that the momentum which is imposed on the absorb-

E
ing surface by a short flash of light is equal to — . This result

c

was experimentally confirmed by Lebedew (1890) and later

again with great accuracy by Nichols and Hull (1901). Exactly

the same pressure is experienced by a body which emits light,

just as a gun experiences a recoil when a shot is fired.

We next imagine a hollow body, say a long tube, and at

the ends of it two exactly equal bodies A and B of the same
material which, according to the ordinary ideas, have the same
mass (Fig. 123). But the body A is to have an excess of energy

E over that of B, say in the form of heat, and there is to be an
arrangement (hollow mirror or something similar) by which
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this energy E can be sent in the form of radiation to B. Let

the spatial extent of this flash of light be small compared with

the length I of the tube (Fig. 123).

Then A experiences the recoil --. Thus the whole tube,

whose total mass we take as M, acquires a velocity v directed

backwards and determined by the equation of momentum

Mv = -.
c

This motion continues until the flash arrives at B and is there

absorbed. Then B experiences

WA B
I __

the same blow forwards and hence

the whole system comes to rest.

The displacement which it under- FlG I23<

goes during the time of travel t

of the flash is x = vt, where v is to be taken from the above

equation, thus

_ Et
X ~Mc

The time of travel, however, is determined (except for a

small error of higher order) by I = ct. Hence the displacement

is

El
X

Mc 2
'

Now the bodies A and B may be exchanged and this may
be done without using external influences. Let us suppose

that two men are situated in the tube, who put A in the place

of B and B in the place of A and then themselves return to

their fbriginal positions. According to ordinary mechanics the

tube^as a whole must suffer no displacement, for changes of

position can be effected only by external forces.

If this exchange were to be carried out, everything in the

interior of the tube would be as at the beginning, the energy

E would again be at the same place as before, and the distri-

bution of mass would be exactly the same. But the whole

tube would be displaced a distance x with respect to its initial

position by the light-impulse. This, of course, contradicts

all the fundamental canons of mechanics. We could repeat

the process and thus impart any arbitrary change of position

to the system without applying external forces. This is,

however, an impossibility. The only escape from the diffi-

culty is to assume that when the bodies A and B are exchanged
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these two bodies are not mechanically equivalent but that B
has a mass greater by m than A in consequence of its excess

of energy E. But then the symmetry during the exchange is

not maintained, and the mass m is then displaced from right

to left by a distance I. At the same time the whole tube is

displaced a distance x in the reverse direction. This dis-

tance is determined by the circumstance that the process

occurs without the intervention of external influences. The

total momentum, consisting of that of the tube M- and of that
%

of the transported mass — m- is thus zero.
v

M.x — ml = O

from which it follows that

ml

Now this displacement must exactly counterbalance that

produced by the light-impulse, hence we must have

_ ml _ EZ
X ~ M ~" W2

'

This allows us to calculate m and we get

E
c'

m = -.

This is the amount of inertial mass that must be ascribed

to the energy E in order that the maxim of mechanics remain
valid which states that no changes of position can occur with-

out the action of external forces.

Since every form of energy is finally transformable into radia-

tion by some process or other, this law must be universally

valid. Accordingly mass is nothing other than a form of appear-

ance of energy. Matter itself loses its primary character as

an indestructible substance and is nothing more than points

of concentrated energy. Wherever electric and magnetic fields

or other effects lead to intense accumulations of energy the

phenomenon of inertial mass presents itself. Electrons and
atoms are examples of such places at which there are enormous
concentrations of energy.

We can touch on only a few of the numerous important

consequences of this theorem.

Concerning firstly the mass of the electron, formula (69),
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4 u
p. 177, shows that for the statical mass m = —^ the electro-

3 c

static energy U cannot be the total energy E of the electron

at rest. There must be present another part of energy V,

E = U + V, such that

_4U_ E_ U + V
" l

°~3c*-~c* c^~'

From this it follows that V = -U — U =ilJ = -E. Thus the
3 3 4

total energy is three-quarters electrostatic and one-quarter

of a different kind. This part must be due to the cohesive

forces which hold the electron together by counterbalancing
the electrostatic attraction. Ingenious theories on this point

have already been developed by Mie, Hilbert, and Einstein,

but the results are not yet sufficiently satisfactory to enable

us to describe them. The hypotheses of Einstein seem to

be the most promising, and we shall return to consider them
briefly when we come to deal with the general theory of rela-

tivity.

On the other hand, the law of the inertia of energy is even
now of very great importance for the problem of the structure

of the material atom.
We have already mentioned (p. 171) that every atom

consists of a positive part, which is indissolubly connected with
the inertial mass, and of a number of negative electrons.

Experiments by Rutherford (1913) and his collaborators on
the scattering of the positive rays, the so-called a-rays, emitted
by radioactive substances, proved that the positive constituents

of atoms, which are nowadays called " nuclei " or " protons,"

are extraordinarily small, indeed much smaller than electrons,

whose radii (p. 178) have been estimated at 2 . io13 cms.

Now if the mass of the nucleus, like that of the electron, is

for the main part (three-quarters) electromagnetic by nature,

then there should be between it and the radius a a formula
similar to that applied earlier (p. 178) to electrons, namely,

2 e
}}l o — - —^> but perhaps with a different numerical factor.

3ac 2

Thus the masses would be inversely proportional to the radii
;

Radius of the electron _ Mass of the nucleus

Radius of the nucleus Mass of the electron'

But we know that the hvdrogen atom is 2000 times smaller

than the electron. From this it follows that the radius of
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the hydrogen nucleus is about 2000 times smaller than that of

the electron, and this is in good agreement with the results.

Thus we can apply the law of the inertia of energy success-

fully to the masses of atoms or nuclei.

Radioactive atoms are catalogued, as we know, according

to the type of rays they emit. 1. a-rays. These are positively

charged particles which have been shown to be helium nuclei.

2. jS-rays, which are electrons. 3. y-rays, which are electro-

magnetic rays of the nature of Rontgen rays. In these pro-

cesses of emission the atom loses not only direct mass, but also

energy to a considerable amount. But according to the law
of the inertia of energy the loss of energy also entails a loss of

mass. Unfortunately this is so small that it has not yet been
possible to determine it experimentally.

Fundamentally, however, the discovery that when an atom
is disintegrated the sum of the masses of the component parts

is not equal to the mass of the original atom is of great impor-

tance. It has long been an object of research to resolve all

atoms into simpler primary constituents. Prout (1815) set

up the hypothesis that these primary constituents are the

hydrogen atoms. He supported this idea by pointing out that

the weights of many atoms are whole multiples of the weight

of the hydrogen atom. But exact measurements of the atomic
weights have not confirmed this assertion and this has served

to discountenance Prout's hypothesis. But nowadays it has

been taken up again with success. For according to the law
of the inertia of energy the mass of an atomic nucleus com-
posed of n hydrogen nuclei is not simply equal to n times the

mass of the hydrogen nucleus, but differs from it by an amount
of energy necessary to combine these nuclei. Recently this

view has received strong support through the discovery by
Rutherford (19 19) that hydrogen nuclei can be forcibly detached
from nitrogen nuclei by a bombardment with a-rays. It is

true that the law of the inertia of energy can account for only

small deviations of the ratio of the atomic weights from integral

numbers. But there is still another cause which produces the

great differences, the fact of isotopes. Many elements are

mixtures of atoms having equally charged nuclei and a similar

arrangement of electrons but they have different nuclear mass.

These cannot be separated chemically, although this has been
carried out physically. The existence of isotopes was first

proved in the case of radio-active substances, and recently

by Aston (1920) in the case of many other elements. But
we cannot here enter into this interesting subject.

This survey of the problem of modern atomic theory shows us

very distinctly that Einstein's theory of relativity is no product
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of fantastic speculation, but rather a guiding thread in the

most important region of physical research. The unveiling of

the secret of the world of atoms is an aim which exerts a direc-

tive influence on the mental growth of humanity, and it exceeds

in grandeur and importance all other problems of natural

science, perhaps even the problem of the structure of the

universe. For every step towards this goal gives us not only

new weapons in the struggle for existence but furnishes us

with knowledge of the most intimate relationships of the

natural world, and teaches us to distinguish between the decep-

tion of the senses and the truth of the eternal laws of the

universe.

9. The Optics of Moving Bodies

Now that we have drawn the most important inferences

from our modified mechanics it is time to return to those prob-

lems from which Einstein's theory of relativity emanated,

namely, the electrodynamics and optics of moving bodies.

The fundamental laws of these regions of physics are condensed

in Maxwell's field equations, and even Lorentz had recognized

that these are invariant for empty space (c = I, ft = I, o == o)

with respect to Lorentz transformations. The exact invariant

field equations for moving bodies have been set up by Min-

kowski (1907). They differ from the Lorentz formulae of the

theory of electrons only in minor terms which cannot be tested

by observation, but have in common with these the partial con-

vection of the dielectric polarization, and hence account in full

agreement with observation for all electromagnetic and optical

phenomena involving moving bodies. We recall, in particular, the

experiments of Rontgen, Eichenwald, and Wilson (V, 11, p. 166),

yet we shall not discuss them further as this would require

elaborate mathematical calculation. But the optics of moving

bodies may be treated in quite an elementary way and we

shall describe them here as one of the most beautiful applica-

tions of Einstein's theory.

According to Einstein's theory of relativity there is no

ether but only bodies moving relatively to each other, and so

it is self-evident that all optical phenomena in which the source

of light, the substances traversed by radiation, and the observer

are at rest in one and the same inertial system are the same for

all inertial systems. Thus, this also explains the Michelson-

Morley experiment, which gave rise to the theory. The

question now is merely to determine whether the phenomena

which occur when the source of light, the medium traversed

by radiation, and the observer are in relative motion are

correctly represented by the theory.
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Let us imagine a light wave in a material body which is at

rest in the system of reference S. Let its velocity be c x = -

(n being the index of refraction), its vibration number v, and

its direction relative to the system S definitely fixed. We
enquire as to how these three characteristics of the wave are

judged by an observer who is at rest in a system of reference S'

which is moving with the velocity v parallel to the ^-direction

of the system S.

We treat this question according to the same method as

that which we applied earlier (IV, 7, p. 103) except that now
we use Lorentz transformations as our basis of reasoning in

place of Galilei transformations. We showed there that the

wave-number

i> -
1)

is an invariant. For it denotes the number of waves which

have left the zero point or origin after the moment t = o and

up to the moment t have reached the point P, during which

time they advance a distance s (Fig. 69, p. 103). This invari-

ance now holds, of course, for Lorentz transformations.

We next consider waves that advance parallel to the ^-direc-

tion. Then the ^-co-ordinate of the point P must be inserted

for s, and we get

<'-3-'('-y

where v, v ', and cv c\ are the frequencies and velocities of the

wave relative to the systems S and S'. If on the right we
insert the expressions for x' and t' given by the Lorentz trans-

formation (72), p. 200, we get

/. X\ V (

,

V X — vt\

it -7) = a(
t
-c>

x
-^r-)

a = y/i _ £2 _ J x _ ?_. If we now first set x — 1,where
c

t = o, and then t = 1, x = o, we get

i
a\c 2

+
c'J\

(95)
V

V =
a
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If we divide the second equation by the first we get

, v

C, =
i

I +
vc

s

If, conversely, we solve for c' 2
we get the strict convection

formula

c' = °
l ~—

•

1 vc.

This agrees exactly with Einstein's addition theorem of

velocities for longitudinal motion [first formula (77), p. 220],

if we replace np in it by cls and u'P by c\. The same rule

which holds for calculating the velocities of material bodies

relative to various systems of reference may also be applied

to the velocity of light.

v
If members of order higher than the second in j8 = - be

c

neglected, the law, however, becomes identical with Fresnel's

convection formula (43), p. 117. For, with this approximation,

we may write

_i+2-i+i
vc, B n nc

1 _ _J 1 — c
c 2 n

Thus

\ nc)

,
VC, V2= ct - v + —-
- —

,

wc wc

and if we omit the last term of the second order and set

_L= _ we geten
•( - $

This is precisely Fresnel's convection formula.

The second of the formula (95) represents Doppler's principle.

This is usually applied to a vacuum, so that c
}

— c ;
then,
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as we know, it follows from the addition theorem of velocities

(p. 220) that c\ = c. And the second of formulae (95) gives us

c

But now 1 — jS
2 = (1 — jS) (1 + j8), hence we may write

T -]_ R V T

-0
1 + J8 ^ + ?

Thus the strict formula for the Doppler effect assumes the

symmetrical form

vs/i + ^
= "V1 - ? . • • (96)

which expresses in an evident way the equivalence of the

systems of reference S and S'. If we neglect the terms of

order higher than the second, we may replace \/i + ft
by

1 + 1 jS, and \/i — jS by 1 — Jj8.
Accordingly we get
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If we here insert the values given by the Lorentz transfoiilla-

tion (72) p. 200, we get

ft- v

At(<-;) =

From this it follows, firstly, for x = o, y = o, s = o, / = 1,

and then, for / = o,

Thus

>
vx

1

: \C-a

s = ay

= -{fi% + ay).
ac

fix.

If the wave-plane relative to the system of reference S

were perpendicular to the

v-axis, then we should have
s = y. Since this is not the

case, it must be deflected

(Fig. 124). Suppose x, y are

the co-ordinates of any point

P in the wave-plane. If, in

particular, we choose for P
the point of intersection A
with the #-axis, we must
set x = a, y = o, and thus

s == pa. In the same way
we must set x = 0, y = b for

the point of intersection B
with the v-axis, thus s = ab.

Hence we get

s = ^a = ab or

This ratio is clearly a measure of the deflection of the
a

wave-front. It is easy to see that it agrees with the elementary

definition of the aberration constant according to the emission

theory (IV, 3, p. 82). For the perpendicular OC dropped

from the origin on to the wave-plane is the direction of propa-

gation. If D is the projection of C on the #-axis, then OD = d

is the displacement to which a telescope of length DC = /

16
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placed parallel to the v-axis must be subject during the time

required by the light to traverse the tube, in order that a

ray that strikes the middle of the object glass at C should

reach exactly the middle of the eye-piece at O. Thus - is the
i

aberration constant. From the similarity of the triangles

OCD, BAO we get the proportion

d b p p
I

~ a a Vi — jS
2

'

This is the exact aberration formula. If we neglect jS
2 in

comparison with i, it simplifies into the elementary formula

d n v

This result is particularly remarkable because all the ether

theories have considerable difficulties to overcome in explaining

aberration. In making use of the Galilei transformation we
obtain no deflection at all of the wave-plane and the wave-
direction (IV, 10, p. 121), and to explain aberration we must
introduce the conception " ray " which need not agree in moving
systems with the direction of propagation. In Einstein's

theory this is not necessary. In every inertial system S the

direction of the ray, that is, the direction along which the energy

is transported coincides with the perpendicular on the wave-

planes, nevertheless the aberration comes out in the same
simple way as the Doppler effect and Fresnel's convection

coefficient from the conception of a wave with the help of the

Lorentz transformation.

This method of deriving the fundamental laws of the optics

of moving bodies shows very strikingly the superiority of

Einstein's theory of relativity above all other theories.

io. Minkowski's Absolute World

The essence of the new kinematics consists in the insepar-

ability of space and time. The world is a four-dimensional

manifold, its element is the world-point. Space and time are

forms of arrangement of the world-points, and this arrangement

is, to a certain extent, arbitrary. Minkowski has expressed

this view in the words :
" From now onwards space and time

are to sink to shadows and only a sort of union of both retain

self-dependence." And he has worked out this idea logically

by developing kinematics as four-dimensional geometry. We
have made use of his method of description throughout,
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omitting the y- and 2-axis only for the sake of simplicity and
working in the xi-plane. If we throw a glance al the geometry
in the */-plane from the mathematical point of view, we
that we are not dealing with ordinary Euclidean geometry.

For in this all straight lines that radiate out from the origin

are equivalent, the unit of length on them is the same, and the

calibration curve is thus a circle (Fig. 125). But in the #/-plane

the space-like and the time-like straight lines are not equivalent.

There is a different unit of length on each, and the calibration

curve consists of the hyperbolae

G = x 2 - cH* = + I.

In Euclidean geometry we can construct an infinite number
of rectangular co-ordinate systems with the same origin O,

which emerge from each other by rotation. In the #/-plane

there are likewise an infinite number of equivalent co-ordinate

systems, for which the one axis

can be chosen at will within a

certain angular region.

In Euclidean geometry the

distance s of a point P with

the co-ordinates x, y from the

origin is an invariant with re-

spect to rotations of the co-

ordinate system (see III, 7,

formula (28), p. 64). By
Pythagoras' theorem we have
(Fig. 125) in the ^-system

r
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and this may be regarded as the ground invariant s 2 of a Eucli-

dean geometry having the rectangular co-ordinates x, u.

It is true that we cannot extract the square root of the

negative quantity — cH 2
, and u itself cannot be calculated

from the time t. But mathematicians have long been accustomed
to overcoming such difficulties by making a bold stroke. The
" imaginary " quantity v — I =Ef has been firmly established

in mathematics since the time of Gauss. We cannot here

enter into the question of the basis on which the doctrine

of imaginary numbers is strictly founded. These numbers are

essentially no more " imaginary " than a fraction such as f,

for numbers " with which we number things or count " properly

comprise only the natural integral numbers, i, 2, 3, 4, . . .

And 2 is not divisible by 3 so that f is an operation that can be

carried out just as little as s/— 1. Fractions such as § signify

an extension of the natural conception of numbers, and they

have become familiar through our school teaching and custom,

and excite no feeling of strangeness. A similar extension of

the conception of number is given by imaginary numbers,
which are just as little unusual to mathematicians as fractions.

All formulae that contain imaginary numbers have just as

definite a meaning as those formed from ordinary " real
"

numbers, and the inferences drawn from them are just as

convincing.

If we here use the symbol sj'
— 1= *, we may write

u = id.

The non-Euclidean geometry of the atf-plane is thus formally

identical with Euclidean geometry in the #«-plane, and w-values

correspond only to real times t.

This theorem is of inestimable advantage for the mathe-
matical treatment of the theory of relativity. For in the case

of numerous operations and calculations the real issue concerns,

not the reality of the quantities considered, but the algebraic

relations that exist between them and that hold just as well

for imaginary numbers as for real numbers. Hence we can
apply the laws known from Euclidean geometry to the four-

dimensional world. Minkowski replaces

x y z id

by
x y z u

and then operates with these four co-ordinates in a fully sym-
metrical way. The ground-invariant then clearly becomes

G = s 2 = x*+y* + z 2 + n 2
.
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The special position occupied by the time thus vanishes from

all formulae, and this to a very considerable degree facilitates

the calculations and allows us to survey them readily as a

whole. In the final result we have again to replace u by id,

and then only such equations retain a physical meaning as

are formed exclusively from real numbers.

Non-mathematicians will not understand mucli of these

arguments and will, perhaps, become indignant at the " mystic

equation" 3 . io 10 cms. = */— 1 sec, formed half in jest by

Minkowski, and will be inclined to support the critics of the

theory of relativity, to whom the equivalence of time with the

spatial dimensions appears sheer nonsense.

We hope that our method of representation in which the

formal method of Minkowski appears only at the conclusion

will be able to nullify such objections. In the */-plane t is clearly

by no means interchangeable with the dimension of length

x. The light-lines $ and -q are the insuperable barriers between

the time-like and the space-like world-lines. Thus Minkowski's

transformation u = id is to be valued only as a mathematical

artifice which puts in the right light certain formal analogies

between the space-co-ordinates and the time, without, however,

allowing them to be interchanged

But this artifice has led to important disclosures. Without

it Einstein's general theory of relativity cannot be imagined.

The important point in it is the analogy between the ground-

invariant G and the square of a distance. In future we shall

call

s = v/G~ = Jx 2 +y* + z 2 + u 2 = s/x 2 + y
2 + z 2 - cH 2

the " four-dimensional distance," but we must remember that

the expression is used in an applied sense.

After our earlier discussion of the invariant G the real

meaning of the quantity s is easy to understand. Let us confine

our attention to the atf-plane, then

s = VG = \/x 2
-f u 2 = s/x 2 - c 2

t
2

.

Now for every space-like world-line G is positive, and thus s,

as the square root of a positive number, is a real quantity.

We can then make the world-point x, t simultaneous with the

origin by choosing a suitable system of reference S. We then

have t = o, and s = s/x 2 = x as the spatial distance of the

world-point from the origin.

For every time-like world-line G is negative, and hence

s is imaginary. Then there is a co-ordinate system in which

x = o, and hence s = sj — cH 2 = id. Thus, in any case s
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has a simple meaning and is to be regarded as a measurable
quantity.

We here close our account of Einstein's special theory of

relativity. Its results may be condensed into the following

statements :

Not only the laws of mechanics but those of all physical events,

in particular of electromagnetic phenomena, are completely identical

in an infinite number of systems of reference which are moving

uniformly with translation relatively to each other and which

are called inertial systems. In each of these systems a particular

measure holds for the lengths and the times, and these measures are

connected with each other by the Lorentz transformations.

Systems of reference which move with acceleration relatively

to each other are no more than in mechanics identical with

inertial systems. If we refer physical laws to such acceler-

ated systems, they become different. In mechanics centri-

fugal forces manifest themselves, and in electrodynamics there

are analogous effects, the study of which would take us too far.

Thus Einstein's special theory of relativity does not do away
with Newton's absolute space in the restricted sense which we
attached to this expression earlier (III, 6, p. 61). In a certain

sense it puts the whole of physics, including electrodynamics,

into the same state as that in which mechanics has been since

the time of Newton. The far-reaching questions of absolute

space which troubled us there are not yet solved. We have
scarcely advanced a step further, indeed, though by extending

the physical complex beyond the vista of mechanics the problem

has become considerably more difficult.

We shall now see how Einstein has overcome these obstacles.



CHAPTER VII

EINSTEIN'S THEORY OF RELATIVITY

i. Relativity in the Case of Arbitrary Motions

IN dealing with classical mechanics we discussed in detail

the reasons that led Newton to set up the conceptions of

absolute space and absolute time. But at the same
time we emphasized the objections which can be raised against

these abstractions from the point of view of the theory of

knowledge.
Newton supported his assumption of absolute space on the

existence of inertial resistances and centrifugal forces. It is

clear that these cannot depend on inter-actions between bodies

since they occur in the same way, independently of the local

distribution of masses, in the whole universe as far as observa-

tion can reach. Hence Newton concludes that they depend
on absolute accelerations. In this way absolute space is intro-

duced as the fictitious cause of physical phenomena.
The unsatisfactory features of this theory may be recognized

from the following example.
Suppose two fluid bodies S x and S 2 of the same material and

size to be present in astronomic space and at such a distance

from each other that ordinary gravitational effects of the one
on the other are inappreciably small (Fig. 126). Each of these

bodies is to be in equilibrium under the action of the gravitation

of its parts on each other and the remaining physical forces,

so that no relative motions of its parts with respect to each
other occur. But the two bodies are to execute a relative

motion of rotation with constant velocity about the line con-

necting their middle points. This signifies that an observer

on the one body Sj notes a uniform rotation of the other body
S 2 with regard to his own point of vantage, and vice versa.

Now each of these bodies is to be measured by observers that

are at rest with respect to each other. Suppose it is found
that S

x
is a sphere and S 2 is a flattened ellipsoid of rotation.

Newtonian mechanics would infer from the different be-

haviour of the two bodies that S
x is at rest in absolute space,

247
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but that S 2 executes an absolute rotation. The flattening of S
2

is then due to the centrifugal forces.

This example shows us clearly that absolute space is intro-

duced as the (fictitious) cause. For S x cannot be responsible for

the flattening of S 2 , since the two bodies are in exactly the same
condition relatively to each other and therefore cannot deform
each other differently.

To take space as a cause does not satisfy the requirements

of logic with regard to causality. For as we know no other

expression of its existence than centrifugal forces, we can
support the hypothesis of absolute space by nothing beyond
the fact for the explanation of which it was introduced. Sound
epistemological criticism refuses to accept such made-to-order
hypotheses. They are too ready to hand and they disregard

all bounds that scientific research seeks to inter-

pose between its results and the wild dreams of

fancy. If the sheet of paper on which I have
just written suddenly flies up from the table I

should be free to make the hypothesis that the

spectre of Newton had spirited it away. But
common sense prevents me making this hypo-
thesis and leads me to think of the draught
which arises because the window is open and
someone is entering by the door. Even if I do
not feel the draught myself, this hypothesis is

reasonable because it brings the phenomenon
which is to be explained into relationship with
other observable events. This critical choice of

admissible causes distinguishes the logical view
of the world based on cause and effect, which in-

cludes physical research, from mysticism, spirit-

ism, and similar manifestations of unbridled
fancy.

But absolute space is almost spiritualistic in character.

If we ask " what is the cause of centrifugal forces ? " the answer
is :

" absolute space." If, however, we ask what is absolute
space and in what other way does it express itself, no one can
furnish an answer other than that absolute space is the cause of

centrifugal forces but has no further properties. This presenta-

tion shows with sufficient clearness that space as the cause
of physical occurrences must be eliminated from the world-
picture.

It is, perhaps, not superfluous to mention that this opinion
of absolute space is in no wise affected by the introduction of

electromagnetic phenomena. With them effects occur in rotat-

ing co-ordinate systems which are analogous to the centrifugal

Fig. 126.
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forces of mechanics. But, of course, this does not give new
and independent proofs of the existence of absolute space, for,

as we know, the theorem of the inertia of energy amalgamates

mechanics and electrodynamics to a complete whole. It is

merely more convenient for us to operate with the conceptions

of mechanics alone.

Let us now again consider the two bodies S
x
and S 2 . If

space is not accepted as the cause of their different behaviour

we must look for other and more convincing causes.

Let it be supposed that there are no other material bodies

at all outside the two bodies S x
and S 2 . The different behaviour

of S x and S 2 would then be really inexplicable. But is this

behaviour, then, an empirical fact ? There is no doubt that

it is not. We have never been able to gather experience of

two bodies that are poised alone in the universe. The assump-

tion that two real bodies S x
and S 2

behave differently under

these circumstances is supported by no evidence at all. Rather,

we must demand of a satisfactory mechanics that it exclude

this assumption. But if we observe in the case of two real

bodies S x and S 2 the different behaviour above described (we

are acquainted with planets that are more or less flattened)

we can take as the reason of this only distant masses. In the

real world such masses are actually present, namely, the

countless legion of stars. Whatever stellar body we select,

it is surrounded by innumerable others which are enormously

distant from it and which move so slowly relatively to

each other that, as a whole, they exert the effect of a solid

mass containing a cavity in which the body under consideration

is situated.

These distant masses must be the cause of the centrifugal

forces. All our experiences are in agreement with this. For

the system of reference of astronomy with respect to which the

rotations of heavenly bodies are determined has been chosen

so that it is at rest relatively to the stellar system as a whole,

or, more accurately, that tlie apparent motions of the fixed

stars relative to the system of reference are quite irregular

and have no favoured direction. The flattening of a planet

is the greater, the greater its velocity of rotation with respect

to this system of reference which is attached to the different

masses.

Accordingly we shall demand that the laws of mechanics

and, indeed, of physics in general involve only the relative

positions and motions of bodies. No system of reference may
be favoured a priori as was the case with the inertial systems

of Newtonian mechanics and of Einstein's special theory of

relativity, or otherwise absolute accelerations with respect to
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these favoured systems of reference, and not only the relative

motions of bodies, would enter into physical laws.

We thus arrive at the postulate that the true laws of physics

must hold in exactly the same way in systems of reference

that are moving arbitrarily. This denotes a considerable

extension of the principle of relativity.

2. The Principle of Equivalence

Fulfilment of this postulate requires an entirely new formu-

lation of the law of inertia since this is what gives inertial

systems their favoured position. The inertia of a body is no
longer to be regarded as an effect of absolute space but rather

as one due to other bodies.

Now we know of only one kind of inter-action between all

material bodies, namely, gravitation. Further, we know that

experiment has exhibited a remarkable relationship between
gravitation and inertia, which is expressed in the law of the

equality of gravitational and inertial mass (II, 12, p. 37).

Thus the two phenomena of inertia and attraction which are

so different in Newton's formulation must have a common root.

This is the great discovery of Einstein which has transformed

the general principle of relativity from a postulate of the theory

of knowledge to a law of exact science.

We may characterize the object of the following investiga-

tion thus. In ordinary mechanics the motion of a heavy
body (on which no electromagnetic nor other forces act) is

determined by two causes : (1) its inertia towards accelerations

with respect to absolute space
; (2) the gravitation of the

remaining masses. A formulation of the law of motion is

now to be found in which inertia and gravitation amalgamate
to a conception of higher order in such a way that the motion

is determined only by the distribution of the remaining masses

in the universe. But before we set up the new law we must
follow a somewhat longer road to overcome certain conceptual

difficulties.

We discussed the law of the equality of gravitational and
inertial mass in detail earlier. For events on the earth it states

that all bodies fall equally quickly ; for motions of the heavenly

bodies it expresses that the acceleration is independent of the

mass of the moving body. We have already mentioned that

according to measurements of Eotvos this law is valid to an

extraordinary degree of accuracy, but that, in spite of this,

it is not reckoned among the fundamental laws in classical

mechanics but rather is accepted, so to speak, as an accidental

gift of Nature.
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This is now to become different. This law plays the funda-

mental part not only in mechanics but, indeed, in the whole of

physics. We must, therefore, illustrate it so that its essential

content comes out quite clearly. We advise the reader to

make the following simple experiment. Let him take two
light but differently heavy objects, say a coin and a piece of

indiarubber, and place them on the palm of his hand. He
then experiences the weights of the two bodies as pressures

on his hand, and finds them different. Now let him move his

hand rapidly downwards, he experiences a diminution in the

pressure of both bodies. If this motion is continued more and
more rapidly a moment will finally come when the bodies will

release themselves from his palm and will lag behind in the

motion. This will clearly occur as soon as the hand is drawn
down more rapidly than the bodies can fall freely. Now,
since they fall equally quickly in spite of their different weights

they always remain together at the same height even when
they are no longer in contact with the hand.

Let us imagine little imps living on the surface of the hand
who know nothing of the outer world. How would they

judge this whole process ? It is easy to imagine oneself in

the position of such little observers moving with the hand,

if we make the experiment and pay attention to the changing
pressures and motions of the bodies with respect to the hand.

When the hand is at rest the imps will establish that the two
bodies have different weights. When the hand sinks they

will note a decrease of weight of the bodies. They will look

for a cause and will observe that their point of vantage, the hand,

sinks relatively to the surrounding bodies, the walls of the room.
But we may also imprison the imp and the two test bodies in

a closed box and pull this box downwards with the hand. The
observers in the box then observe nothing which will allow them
to establish the motion of the box. They can simply note the

fact that the weight of all bodies in the box decreases at the

same rate. If the hand is now moved so rapidly that the

objects cannot follow but fall freely, the observers in the box
will notice to their astonishment that the objects which were
just before considerably heavy now fly upwards. They acquire

a negative weight, or rather, gravitation no longer acts down-
wards but upwards. Moreover, in spite of their different

weights the two bodies fall equally quickly upwards. The
people in the box can account for these observations in two
ways. Either, they think that the gravitational field continues

to act unaltered but that the box is accelerated in the direction

of the field, or they assume that the masses which previously

exerted an attractive force below the box have disappeared,
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and that in their place new masses have appeared above the

box so that the direction of action of gravitation has been

reversed. We then enquire whether there is any means of

distinguishing by experiments within the box between these

two possibilities ?

And we are bound to answer that physics knows of no

such means. Actually, the effect of gravitation can in no wise

be distinguished from the effect of acceleration ; each is fully

equivalent to the other. This is essentially due to the circum-

stance that all bodies fall equally quickly. If this were not the

case we could at once distinguish whether an accelerated motion

of bodies of different weight is produced by the attraction of

outside masses or is an illusion arising from the acceleration

of the observer's point of support. For in the first case the

bodies of different weight move with different velocities whereas

in the latter case the relative acceleration of all freely moving
bodies with respect to the observer is equally great and they

fall equally quickly in spite of their different weights.

This principle of equivalence of Einstein is thus one of those

theorems which we have particularly emphasized in this book,

namely, such as assert that a certain physical statement cannot

be established or that two conceptions cannot be distinguished.

Physics refuses to accept such conceptions and theorems and

replaces them by new ones. For only ascertainable facts have

physical reality.

Classical mechanics distinguishes between the motion of a

body that is left to itself and is subject to no forces, inertial

motion, and the motion of a body under the action of gravita-

tion. The former is rectilinear and uniform in an inertial

system ; the latter occurs in curvilinear paths and is non-

uniform. According to the principle of equivalence this dis-

tinction must be dropped. For by merely passing over to an

accelerated system of reference we can transform the rectilinear

uniform motion of inertia into a curved, accelerated, motion,

which cannot be distinguished from one produced by gravita-

tion. And the converse holds too, at least for limited portions

of the motion, as will be explained more fully later. From now
onwards we shall call every motion of a body on which no

forces of an electrical, magnetic, or other origin act, but is

only under the influence of gravitating masses, an inertial

motion. This term is thus to have a more general significance

than earlier. The theorem that the inertial motion relative to

the inertial system is uniform and rectilinear, namely, the

ordinary law of inertia, now comes to an end. Rather our

problem now is to state the law of inertial motion in the general-

ized sense.
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The solution of this problem releases us from absolute

space and at the same time furnishes us with a theory ofgravita-

tion which thereby becomes linked up much more intimately

with the principles of mechanics than Newton's theory.

We shall supplement these remarks by adding a few calcu-

lations. We have shown earlier (III, 8, p. 68) that the equations

of motion of mechanics referred to a system S which has the

constant acceleration k with respect to the inertial systems

may be written in the form

mb = K'

where K' denotes the sum of the true force K and the inertial

force — mk, i.e.,

K' = K - mk.

Now, if K is the force of gravitation, then K = mg, thus

K' = m(g-k).

By choosing the acceleration k of the system of reference S

appropriately we can make the difference g — k assume any

arbitrary positive or negative value, or zero. If, in analogy

with electrodynamics, we call the force on unit mass the

" intensity of field
" of gravitation, and the space in which it

acts, the gravitational field, we may say that by choosing the

accelerated system appropriately, we can produce a constant

gravitational field, reduce one that is given, annul, intensify or

reverse it.

It is clear that within a sufficiently small portion of space

and during a small interval of time any arbitrary gravitational

field may be regarded as approximately constant. Hence we can

always find an accelerated system of reference relative to which

there is no gravitational field in the limited space-time region.

We next ask whether it is not possible to eliminate every

gravitational field in its whole extent and for all times by

merely choosing an appropriate system of reference, that is,

whether gravitation may, to a certain extent, be regarded as

" apparent." But this is clearly not the case. The field of

the earth, for example, cannot be fully eliminated. For it is

directed towards the centre, thus the acceleration would have

to point away from it (the centre) ; but this is not possible.

Even if we were to admit (and this we shall have to do) that

the system of reference is not rigid but extends with acceleration

about the centre, this motion would not have been possible

for any arbitrary length of time but would have to have begun

at some moment at the centre. By rotating the system of

reference about an axis we get an inertial force directed away
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from this axis (III, 9, p. 71, formula (31)), namely, the centri-

fugal force

mk = w^-.

This compensates the gravitational field of the earth only at

a certain distance r, namely, at that of the radius of the moon's

orbit, supposed circular, with the time of revolution T.

Thus there are " true " gravitational fields, yet the sense

of this word in the general theory of relativity is different

from that in classical mechanics. For we can always eliminate

an arbitrary sufficiently small part of the field by choosing

the system of reference appropriately. We shall define the

conception of gravitational fields more accurately later.

There are, of course, certain gravitational fields which can

be eliminated to their full extent by a suitable choice of the

system of reference. To find such we need only start from a

system of reference in which a part of space is fieldless and then

introduce a system of reference which is accelerated in some

way. Relative to this there is then a gravitational field. It

vanishes as soon as we return to the original system of reference.

The centrifugal field k = ^L-. is of this kind. The question as

to the conditions under which a gravitational field can be made

to vanish in its whole extent can be answered, of course, only

by the finished theory.

3. The Failure of Euclidean Geometry

But before we proceed we must overcome a difficulty which

calls for a considerable effort.

We are accustomed to represent motions in the Minkowski

world as world-lines. The framework of this four-dimensional

geometry was furnished by the world-lines of light-rays and the

orbits of inertial masses moving under no forces. In the old

theory these world-lines are straight with respect to the inertial

systems. But if we allow the general theory of relativity to

be valid, accelerated systems are equivalent, and in them the

world-lines that were previously straight are now curved (III,

1, p. 49, Fig. 32). And, in place of these, other world-lines

become straight. Moreover, this is also true of the orbits in

space. The conceptions straight and curved become rela-

tivized, so far as they are referred to the orbits of the light-

rays and of freely moving bodies.

Through this the whole structure of Euclidean geometry is

caused to totter. For this rests essentially (cf. Ill, 1, p. 48)
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on the classical law of inertia, which determines the straight

lines.

It might now be thought that this difficulty could be sur-

mounted by using only rigid measuring-rods to define such

geometrical elements as straight line, plane, and so forth.

But not even that is possible, as Einstein shows in the following

way.
We start out from a space-time region in which no gravi-

tational field exists during a certain time relative to an appropri-

ately selected system of reference S.

Next, we consider a body which rotates in this region with

a constant velocity of rotation, say a plane circular disc (Fig. 127)

rotating on its axis at right angles to its own plane. We intro-

duce a system of reference S' which is rigidly fixed to this disc.

A gravitational field directed outwards then exists in S', and

it is given by the centrifugal acceleration k = -L-.

Now, an observer situated on S' wishes to measure out the

disc. To do so, he uses a rod

of definite length as his unit,

which must thus be at rest

relatively to S'. An observer

in the system of reference S

uses exactly the same rod as

his unit of length, and in this

process it must, of course, be

at rest relatively to S.

We shall now have to as-

sume that the results of the

special principle of relativity

hold so long as we restrict

ourselves to portions of space

and time in which the motion can be regarded as uniform. To
make this possible, we assume that the unit rod is small com-

pared with the radius of the disc.

If the observer in S' applies his rod in the direction of a

radius of the disc, the observer in S will notice that the length

of the moving rod relative to S remains unaltered and equal to 1.

For the motion of the rod is perpendicular to the direction of

its length. If the observer in S' applies the rod to the periphery

of the disc, then, by the special theory of relativity, it will

appear shortened to the observer in S. If it be assumed that

100 little rods have to be applied end to end in order to reach

from one end of the diameter to the other, the observer in S

would require 77 = 3*14 . . . times 100, i.e. about 314 rods,

which are at rest relatively to S, to measure out the periphery

;

Fig. 127,
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but the observer in S' would not find this number of rods

sufficient. For the rods that are at rest in S' appear shortened

as regarded from S, and it requires more than 314 of them to

go once completely round the periphery.

Accordingly the observer in S' would assert that the ratio

of the circumference of the circle to the diameter is not it = 3*14

. . . but more ; and this is a contradiction of Euclidean

geometry.

An exactly corresponding result holds for the measurement
of times. If we bring one of two similarly constructed clocks

to the centre, the other to the rim of the disc at rest relatively

to the latter, the second clock, as regarded from the system S,

goes more slowly, because it is moving relatively to S.

An observer situated in the middle of the disc would neces-

sarily establish the same result. It is thus impossible to arrive

at a reasonable definition of time with the help of clocks

which are at rest relatively to the system of reference, if this

system of reference is rotating, i.e. is being accelerated, or, what
signifies the same according to the principle of equivalence,

if a gravitational field exists in it.

In a gravitational field a rod is longer or shorter, a clock

goes more quickly or more slowly, according to the position

at which the measuring apparatus is situated.

This entails that the foundation of the space-time world,

on which rest all the reflections we have so far made, collapses.

We are again compelled to generalize the conceptions of space

and time, but this time in a much more radical way, far exceed-

ing the previous efforts in range.

It is clearly meaningless to define co-ordinates and time

x, y, z, t in the ordinary way. For then the fundamental

geometrical conceptions, straight line, plane, circle, and so

forth, are regarded as immediately given, and the validity of

Euclidean geometry in space or of Minkowski's generalization

to the space-time world, is assumed.

Hence the problem arises to describe the four-dimensional

world and its laws, without .basing it on a definite geometry

a priori.

It seems now as if the ground beneath us is giving way.

Everything is tottering, straight is curved, and curved is straight.

But the difficulty of this undertaking did not intimidate Ein-

stein. Mathematicians had already accomplished important

preparatory work. Gauss (1827) had sketched out the theory

of curved surfaces in the form of a general two-dimensional

geometry, and Riemann (1854) had founded the doctrine of

space of continuous manifolds of any number of dimensions.

We cannot here show how these mathematical instruments
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are applied, although a deeper understanding of the general

principle of relativity is impossible without them. The reader

must not, therefore, expect complete elucidation of Einstein's

doctrine from the following discussion. He will find only

pictures and analogies, which are always poor substitutes for

exact conceptions. But if these indications stimulate the

reader to further study, their purpose will have been fulfilled.

4. Geometry on Curved Surfaces

The problem of outlining a geometry without the frame-

work of straight lines and their Euclidean connecting laws

being given a priori is by no means so unusual as it may appear
at first sight. Let us suppose that a surveyor has the task of

measuring out a hilly piece of land quite covered by a dense

wood, and that he has to sketch a map of it. From each

point he can see only a quite limited part of the surroundings.

Theodolites are useless to him ;

he has essentially to resort to

the measuring chain. This

enables him to measure out

small triangles or quadrangles,

whose corners are fixed by
thrusting graduated poles into

the ground ; and by linking

such directly measurable
figures up with each other

he can gradually advance to

more distant parts of the

wood, which are not directly

visible.

Expressed abstractly, the surveyor may apply the methods

of ordinary Euclidean geometry to small regions. But these

methods cannot be applied to the piece of land as a whole.

It may be investigated geometrically only step by step, by

proceeding from one place to the next. Nay more, Euclidean

geometry is not strictly valid in hilly territory ; there are no

straight lines in it at all. Short pieces of line of the length of the

measuring chain may be regarded as straight. But there is no

straight connecting line along the ground from valley to valley,

and from hill to hill. Euclidean geometry thus, in a certain

sense, holds only in small or infinitesimal regions ;
but in

greater regions a more general doctrine of space or rather of

surfaces holds.

If the surveyor wishes to proceed systematically he will

first cover the ground in the wood with a network of lines

17
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which are marked by poles or specified trees. He requires

two families of lines which intersect (Fig. 128). The lines

will be chosen as smoothly and continuously curved as possible,

and in each family they will bear consecutive numbers. We
take x as the symbol for any member of the one family, and

y as that for any member of the other.

Each point of intersection has, then, two numbers x, y,

say x = 3, y = 5. Intervening points may be characterized

by fractional values of x and y.

This method of fixing the points of a curved surface was

first applied by Gauss ; x and y are, therefore, called Gaussian

co-ordinates.

The essential feature involved is that the numbers x and y
denote neither lengths, nor angles, nor other measurable

geometrical quantities, but merely numbers, exactly as in the

American system of numbering streets and houses.

The task of introducing a measure into this numbering of

the points on the land

/ falls to the lot of the sur-

y^-l . jL_ veyor. His measuring

/_ / chain comprises about

J Sn I *ne region of one mesh of

/ /i J \

I the network of Gaussian

I/' J I co-ordinates.
^' k J J, 4-— The surveyor will now

/a--3 x4 proceed to measure out

Fig. 129. mesh for mesh. Each of

these may be regarded as

a small parallelogram and is defined when the lengths of two
adjacent sides and an angle are known. The surveyor has to

measure these and plot them in his map for each mesh. When
this has been done for all meshes he clearly has a complete

knowledge of the geometry of the land in his map.
In place of the 3 data for each mesh (2 sides and 1 angle)

it is usual to apply a different method in determining the

measure, which has the advantage of greater symmetry.
Let us consider a mesh, a parallelogram, whose sides corre-

spond to two consecutive integers (say x = 3, x = 4, and

y = 7, y = 8) (Fig. 129). Let P be any point within this mesh,

and S its distance from the corner-point O with the smaller

numbers. This will be measured out by the measuring chain.

We draw the parallels to the net lines through P, and they

intersect the net lines in A and B. Further, let C be the foot

of the perpendicular dropped from P on to the #-co-ordinate.

The points A and B then also have numbers, or Gaussian

co-ordinates, in the net. A is determined, say, by measuring
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the side of the parallelogram on which A lies and the distance

AO, and by regarding the ratio of these two lengths as the

increase of the #-co-ordinate of A towards O. We shall denote

this increase itself by x, choosing O as the origin of the Gaussian

co-ordinates. In the same way we determine the Gaussian

co-ordinate y of B as the ratio in which B cuts the corresponding

side of the parallelogram, x and y are then clearly the Gaussian

co-ordinates of P.

The true length of OA is, of course, not x but, say, ax
where a is a definite number to be determined by measurement.
In the same way the true length of OB is not y but by. If

we move the point P about, its Gaussian co-ordinates change,

but the numbers a and b which give the ratio of the Gaussian

co-ordinates to the true lengths remain unchanged.

We next express the distance OP = s with the help of the

right-angled triangle OPC according to Pythagoras' theorem.

We have
s 2 = OP 2 = OC 2 + CP 2

.

Now OC = OA + AC, thus

s 2 = OA 2 + 2OA . AC + AC 2 + CP 2
.

On the other hand, in the right-angled triangle APC, we have

AC 2 + CP 2 = AP 2
.

Hence
s 2 = OA 2 + 2OA . AC + AP 2

.

Here OA = ax, AP = OB = by. Further, AC is the projection

of AP = b . y, and thus bears a fixed ratio to it, say AC = cy

Hence we get

s 2 = a 2x 2 + 2acxy + b 2
y

2
.

Here a, b, c are fixed ratio numbers. It is usual to designate

the three factors of this equation differently and to set

s 2 = gn*
2 + 2g12*y + g22y 2

. . (97)

This equation may be called the generalized Pythagorean
Theorem for Gaussian co-ordinates.

The three quantities gllf g12 , g2 2 mav serve, just like the sides

and angle, to determine the actual conditions of size of the

parallelogram. We therefore call them the factors of the

measure determination. They have different values from mesh
to mesh, which must be inserted in the map or given as " func-

tions " with the help of analytical mechanics. But if they are

known for every mesh, then, by formula (97), the true distance

of an arbitrary point P within an arbitrary mesh from the
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origin can be calculated, so long as the numbers or the Gaussian
co-ordinates x, y of P are given.

The factors of measure-determination thus represent the
whole geometry on the surface.

It will be objected that this assertion cannot be right.

For the network of Gaussian co-ordinates was chosen quite

arbitrarily and so this arbitrary selection also applies to

£n> £i2> &22- That is quite true. Another network could be
chosen, and we should obtain for the distance between the

same points O, P an expression built up just like (97) but
with different factors g'n , g\ 2 ,

g'
22 . Yet there are, of course,

rules for calculating gn , g12 , g22 , transformation formulae of a
kind similar to those with which we became acquainted earlier.

Every real geometrical fact on the surface must clearly

be expressed by such formulae as remain unaltered for a change
of the Gaussian co-ordinates, that is, are invariant. This

makes the geometry of surfaces a theory of invariants of a
very general type. For although the lines of the co-ordinate

net are quite arbitrary, they must be so chosen that they are

continuously curved and cover the surface singly and without

gaps.

Now what are the geometrical problems that the surveyor

has to solve as soon as he has obtained the measure-determina-

tion ?

There are no straight lines on the curved surface, but there

are straightest lines ; these are at the same time those which
form the shortest connection between two points. Their

mathematical name is " geodetic lines," and they are character-

ized mathematically thus : divide an arbitrary line on the

surface into small, measurable sections of lengths slt s 2 , s3 , . . .
;

then the sum

Si + s 2 + ss + . . .

for the geodetic line between two points Plf P2 is less than for

any other line between them (Fig. 130). The s lf s2> . . . may
be determined in this by mere arithmetic from the generalized

Pythagorean Theorem (97), if the gllf g12 , g22 are known.
On a spherical surface it is known that the " greatest

"

circles on the sphere are the shortest lines. They are cut out

by the planes that pass through the centre. On other sur-

faces, they are often very complicated curves ; and yet they

are the simplest curves which form the framework of geometry,

just as straight lines form the framework of Euclidean geometry

of the plane.

Geodetic lines are, of course, represented by invariant

formulae. They are real geometric properties of the surface.
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All the higher invariants can be derived from these invariants.

But we cannot here enter further into this question.

Another fundamental property of a surface is its curvature.

It is generally defined with the help of the third dimension of

space. The curvature of a sphere, for example, is measured

with the help of the sphere's radius, that is, of a distance

which lies outside the spherical surface. Our surveyor in the

woody regions will not be able to apply these means. He cannot

move out of his surface, so he has to try to find out the curva-

ture conditions with his measuring chain alone. Gauss proved

systematically that this is actually possible. We make this

clear to ourselves by the following reflections.

The surveyor measures out twelve equally long wires with his

measuring chain, and with them he forms the regular hexagon

and its radii as shown in Fig. 131. According to a well-known

theorem of ordinary geometry of the plane it is actually possible

to have the twelve wires in one plane all stretched tight simul-

taneously. This is really very remarkable, for when five or six

Fig. 130. FlG
- W-

equiangular triangles are stretched out then the last wire must

fit into its position accurately of itself. We learn at school that

it does so, and what is learned at school is not usually much

reflected on later. And yet it is very astonishing that the

gap is filled in by a wire of exactly the same length as the other

sides.

Actually this succeeds only in the plane. If we attempt

the same thing on a curved surface in such a way that the

centre and the six corners rest on it, the hexagon does not close.

On the summits of hills and in the depths of valleys the last

wire is too long, in passes (saddle-shaped curved surfaces) it is

too short.

We advise the reader to try this for himself with twelve

pieces of string and a cushion.

But this gives us a criterion as to how to find the curvature

of surfaces without leaving the surface. If the hexagon is

complete in it, then the surface is plane ;
if not, then it is

curved. We shall not derive the measure of curvature. The

indications given are sufficient to make it plausible that such
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a measure can be denned rigorously. It clearly depends on
how the factors of measure-determination change from place to

place. As Gauss has proved, the measure of curvature can be
expressed in terms of the gllt g12 , g22 , and it is an invariant of

the plane.

Gauss' theory of surfaces is a method of geometry to which
we can apply the expression contact theory, borrowed from
physics. Not the laws of a surface on a large scale are given

primarily, but their differential properties, the coefficients of

the measure-determination and the invariants formed from
them, above all, the measure of curvature. The form of the

surface and its geometrical properties as a whole can then be
determined subsequently, by processes of calculation, wrhich

are very similar to the solution of the differential equations of

physics. In contrast with this, Euclidean geometry is a typical

theory of action at a distance. This is why the new physics

which is entirely built up on the conceptions of contact action,

of the field, finds the Euclidean scheme insufficient and has to

pursue new paths after the manner of Gauss.

5. The Two-dimensional Continuum

Let us suppose that our surveyor is operating with a wire

hexagon to establish the curvature of the ground, and that he

takes no account of the fact that there is a clear space in the

wood in the middle of the hexagon which allows the sun to

shine on to the ends of the wires that meet there. These

wires will stretch a little owing to their being heated. Hence
the six radial wires will be longer than the six outer wires,

so that the latter will not join up. Hence if the ground is

flat in reality, the surveyor will believe that he is standing

on a flat hill (or in the hollow of a valley) . If he is conscientious

he will repeat the measurement with wires of another material.

These will expand under the influence of the sun's heat more
or less than those used before. This will draw his attention

to the error and will lead him to correct it.

Now let us assume that the increase of length produced

by the heating is the same for all the available materials of

which the wires can be made. The error will then never come
to light. Plains will be regarded as mountains and some
mountains will be regarded as plains. Or let us imagine that

some physical forces as yet unknown to us exert some influence

on the lengths of rods and wires, but to the same extent in

all cases. Then the geometry which the surveyor would deter-

mine with his measuring chain and wire polygons would turn

out quite differently from the true geometry of the surface.
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But so long as he operates in this geometry and has no possi-

bility of adopting the higher standpoint of using the third

dimension he will be firmly convinced that he has determined
the correct geometry of the surface.

These reflections show us that the conception of geometry
in a surface, or, as Gauss denominates it, " geometria intrin-

sica," has nothing to do with the form of the surface as it

appears to an observer who has the third dimension of space
at his disposal. Once the unit of length has been given by a

measuring chain or a ruled scale the geometry in the surface

is fully established relatively to this measure-determination,
no matter what changes the measures undergo in reality

during the process of measurement. These changes do not
exist for a creature which is confined to the surface, so long
as they affect all substances in the same way. Hence this

creature will find curvatures where there are in reality none,

and conversely. But this " in reality " becomes meaningless
so far as surface creatures are concerned for they have no
conception at all of a third dimension

;
just as we human

beings have no idea of a fourth dimension of space. It is,

therefore, also meaningless for these creatures to denominate
their world as " a surface," which is embedded in a three-

dimensional space ; rather it is a " two-dimensional continuum."
This continuum has a definite geometry, definite shortest or

geodetic lines, and also a definite " measure of curvature
"

at every point. But the surface creatures will associate by
no means the same idea with the latter phrase as we do with the

intuitive conception of the curvature of a surface, rather they
will only mean that the wire hexagon remains more or less

open or closed and nothing more.
If the reader succeeds in experiencing in himself the feelings

of this surface creature and in imagining the world as it appears
to this creature the next stage of abstraction will present no
difficulty.

Exactly the same thing might happen to us as human
beings in our three-dimensional world. Perhaps this is em-
bedded in a four-dimensional space in precisely the same way
as a surface is < mbedded in our three-dimensional space ; and
unknown forces may change all lengths in certain regions of

space without our ever being able to remark this directly. But
then it would be possible for a spatial polyhedron, constructed

after the manner of the six-sided figure, which should close

according to ordinary geometry, to remain slightly open.

Have we ever detected anything of this sort ? Since olden

times Euclidean geometry has always been considered to be
exact. Its theorems have even been declared in the critical
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philosophy of Kant (1781) to be a priori and, as it were, eternal

truths. The great mathematicians and physicists, above all

Gauss, Riemann, and Helmholtz have never shared this general

belief. Gauss himself even once undertook an extensivelyplanned

measurement to test a theorem of Euclidean geometry, namely,

that which asserts that the sum of the angles in a triangle

amounts to two right angles (180 ). He measured out the

triangle between the three mountains, Brocken, Hoher Hagen,

and Inselberg. The result was that the sum of the angles

was found to be of the right amount within the limits of

error.

Gauss was attacked on many sides by philosophers on ac-

count of this undertaking. It was asserted above all that

even if he had detected deviations, this would at most have

proved that the light rays between the telescopes had been de-

flected by some perhaps unknown physical causes, but nothing

about the validity or non-validity of Euclidean geometry.

Now Einstein asserts, as we have already remarked above

(p. 262), that the geometry of the real world is actually not

Euclidean, and he supports this statement by concrete ex-

amples. To understand the relation of his doctrine to the

early discussions about the foundations of geometry we must
interpolate certain reflections of principle which verge on

philosophic regions.

6. Mathematics and Reality

The question is : what is the object of geometric conceptions

at all ? Geometry certainly has its origin in the surveyor's

art of measurement, that is, a purely empirical doctrine. The
ancients discovered that geometrical theorems can be proved

deductively, that is, that only a small number of prin-

ciples or axioms need be assumed and then the whole system

of the remaining theorems can be derived from them by mere
logic. This discovery had a powerful effect. For geometry

became the model of every deductive science, and it was re-

garded as the object of rigorous thinkers to demonstrate some-

thing " more geometrico." Now what are the objects with which

scientific geometry occupies itself ? Philosophers and mathe-
maticians have discussed this question from all points of view

and have given a great number of answers. The certainty

and incontrovertible correctness of geometric theorems was
generally admitted. The only problem was how to arrive at

such absolutely certain theorems and what were the things to

which they referred.

It is without doubt true that if a person admits the geometric
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axioms to be correct then he is also compelled to recognize

all the other theorems in geometry. For the sequence of the

proofs is convincing for whosoever can think logically at all.

This reduces the question to that of the origin of the axioms.

In the axioms we have a small number of theorems about

points, straight lines, planes, and similar conceptions, which

are to hold exactly. For this reason, unlike most statements

of science and of ordinary life, they cannot have their origin

in experience ; for this always furnishes only approximately

correct and more or less probable laws. Hence we must look

for other sources of knowledge which guarantee that these

theorems are absolutely certain. According to Kant (1781)

Time and Space are forms of intuition, which are a priori, which

precede all experience, and which, indeed, first make experience

possible. According to this the objects of geometry must be

preconstructed forms of pure intuition, which are at the base

of the judgments which we make about real objects in empirical

intuition (direct perception). According to this the judgment
" the edge of this ruler is straight " would come about by

comparing the directly perceived edge with the pure intuition

of a straight line, without this process of course coming into

consciousness. The object of geometric science would then be

the straight line given in pure intuition, that is neither a logical

conception, nor a physical thing, but some third kind of thing

whose nature can be communicated only by calling attention

to the experience connected with the intuition " straight."

We do not presume to pronounce a judgment on this

doctrine or on similar philosophical theories. These concern,

above all, the experience of space, and this lies outside the

scope of our book. Here we are dealing with the space and time

of physics, that is, of a science which consciously and more

and more clearly turns away from intuition as a source of

knowledge and which demands more precise criteria.

We must now set it down as a fact that a physicist never

founds the judgment " this edge of the ruler is straight " on

direct intuition. It is a matter of indifference to him whether

there is any such thing as a pure form of intuition of a straight

line or not, with which the edge of the ruler can be compared.

Rather he would make definite experiments to test the straight-

ness, just as he would test every other assertion about objects,

by means of experiments. For instance, he will look along

the edge of the ruler, that is, he will ascertain whether a ray

of light which touches the initial and the end point of the

edge also just glides over all the remaining points of the edge

(Fig. 132). Or he will turn the ruler about the end points

of the edge and will make the point of a pencil touch any
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arbitrary intermediate point of the edge. If this contact re-

mains unaffected by the rotation, the edge is straight (Fig. 133).

Now, if we subject these processes, which are evidently far

superior to intuition, to criticism, we see that they, too, go

no further into the question of absolute straightness. In the

first method it is evidently already assumed that the ray of

light follows a straight course. How do we prove that it

does ? In the second method it is assumed that the points

about which the ruler is turned and the point of the pencil are

in rigid connexion and that the ruler is itself rigid. Suppose

that we wish to test the straightness of a rod with circular cross

section, which is lying in a horizontal position and is a little

bent owing to its own weight ; then this bending will remain

unaltered by the rotation, thus the method of contact will

recognize straightness where there is in reality curvature. It

is useless to object that these are sources of error which occur

in every physical measurement and which are avoided by
every expert experimenter. What we are concerned with is

to show that absolute straightness or any other geometrical

property cannot be directly proved empirically, but only
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is actually observable consists of space-time coincidences. In

the language of Minkowski these are world-points thai

marked in the space-time manifold by the intersection of

material world-lines. Physics is the doctrine of the relations

between such marked world-points.

Mathematical theory is the logical working out of these

relations. However complicated it may be its ultimate object

is always to represent the actually observed coincidences as

the logical consequences of certain fundamental conceptions

and principles. Some statements about coincidences occur in

the form of geometrical theorems. Geometry as a doctrine

that is applicable to the real world has no favoured rank above

the other branches of physical science. The conceptions of

forms are conditioned in the same way by the actual behaviour

of the natural objects, just like the conceptions of other physical

regions. We cannot allocate geometry to a special position.

The fact that Euclidean geometry hitherto reigned supreme

is due to the fact that there are light rays which behave with

very great accuracy like the straight lines of the conceptual

scheme of Euclidean geometry, and that there are almost

rigid bodies which satisfy the Euclidean axioms of congruence.

The statement that geometry is absolutely exactly valid

cannot be credited as having any sense from a physical point

of view.

The objects of the geometry which is actually applied to the

world of things are thus these things themselves regarded

from a definite point of view. A straight line is by definition

a ray of light, or an inertial orbit, or the totality of the points

of a body regarded as rigid, which do not move when the body

is turned about two fixed points, or some other physical some-

thing. Whether the straight line so defined has the properties

which the geometry of Euclid asserts can be determined only

from experience. Such a property of Euclidean geometry is

exemplified in the theorem of the sum of the angles in a triangle

which Gauss tested empirically. We must recognize that such

experiments are thoroughly justified. Another characteristic

property of two-dimensional geometry was given by the auto-

matic closing of the wire hexagon (p. 261). Only experience

can teach whether a definite way of realizing the straight line,

the unit of length, and so forth has this property through

definite physical things or not. In the former case Euclidean

geometry is applicable relatively to these definitions, in the

latter it is not.

Now Einstein asserts that all previous definitions of the

fundamental conceptions of the space-time continuum by means

of rigid measuring rods, clocks, rays of light, or inertial orbits
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in small limited regions certainly obey the laws of Euclidean

geometry or of Minkowski's world, respectively, but not on

the large scale. Only the smallness of the deviations is re-

sponsible for the lateness of their discovery. There are two
ways out of the difficulty. Either we may give up defining

the straight line by means of the ray of light, length by means
of a rigid body, and so forth, and we may look for other realiza-

tions of the fundamental Euclidean conceptions in order to

be able to retain the Euclidean system embodying their logical

relationships ; or we may give Euclidean geometry itself up
and endeavour to set up a more general doctrine of space.

It is clear to anyone who is not quite a stranger to science

that the first way does not seriously come into consideration.

Nevertheless we cannot prove that it is impossible. Here it is

not logic that decides, but scientific discrimination. There

is no logical path from fact to theory. Accidental ideas,

intuition, fancy, are here, as everywhere, the sources of creative

achievement, and the criterion of correctness is represented

by the power of predicting phenomena that have not yet been

investigated nor discovered. Let the reader assume for a

moment that a ray of light in empty cosmic space is not the
" straightest " thing there is, and let him work out the result.

Then he will understand why Einstein pursued the other path.

As Euclidean geometry failed, he could have fallen back

on some other definite non-Euclidean geometry. There are

systems of conceptions of this sort worked out by Lobatschewski

(1829), Bolyai (1832), Riemann (1854), Helmholtz (1866) and
others, and these systems were evolved chiefly to test whether

definite axioms of Euclid are necessary logical consequences

of the others ; if they were, we should have to arrive at logical

contradictions if we replaced them by other axioms. If we
were to choose a special non-Euclidean geometry of this kind

to represent the physical world we should simply be substitu-

ting one evil for another. Einstein went back to the physical

root of phenomena, space-time coincidence, event, world-point.

7. The Measure-determination of the Space-time
Continuum

The totality of marked world-points is what is actually

ascertainable. In itself the four-dimensional space-time con-

tinuum is structureless. It is the actual relations of the world-

points in it, which experiment discloses, that impresses a

measure-determination and a geometry on it. Thus, in the

real world we are confronted with exactly the same circum-
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stances as those with which we just now became acquainted
in considering surface-geometry. Hence the mathematical
treatment will be the same in method.

First we shall introduce Gaussian co-ordinates into the
four-dimensional world. We construct a network of marked
world-points. This signifies that we consider space to be
filled with matter moving arbitrarily, which may turn and be
deformed in any way but is to maintain its continuous connexion

;

it is to be a sort of " mollusc," as Einstein expresses it. In
it we draw three families of intersecting lines which we number,
and we distinguish these families by the letters x, y, z. In
the corners of the meshes of the resulting network we imagine
clocks to be placed, which go at any arbitrary rate, but are

arranged so that the difference of the data t of adjacent clocks

is small. Thus the whole is a non-rigid system of reference,
" a mollusc of reference." To it there corresponds in the four-

dimensional world a system of Gaussian co-ordinates, consisting

of a net of four numbered families of surfaces x, y, z, t.

All moving rigid systems of reference are, of course, special

kinds of systems of reference which deform themselves in this

way. But from our general point of view it is meaningless to

introduce rigidity as something which is given a priori. The
separation of time from space is also quite arbitrary. For,

since the rate of the clocks can only be assumed to be quite

arbitrary, even if continuously variable, space as the totality

of all " simultaneous " world-points is not a physical reality.

If different Gaussian co-ordinates are chosen other world-points

become simultaneous.

But these things which do not alter when we pass from one
system of Gaussian co-ordinates to another are the points of

intersection of the real world-lines, the marked world-points,

space-time coincidences. All really ascertainable facts of

physics are qualitative relations between the positions of these

world-points and thus remain unaffected by a change of Gaus-
sian co-ordinates.

Such a transformation of the Gaussian co-ordinates of the

space-time continuum denotes a transition from one system
of reference to another that is arbitrarily deformed and in

motion. The postulate of using in the laws of nature only
what can really be ascertained or established thus brings it

about that these co-ordinates are to be invariant with respect

to arbitrary transformations of the Gaussian co-ordinates from
x, y, z, t into x'

, y\ z', V'. This postulate clearly contains the

general principle of relativity, for among the transformations

of x, y, z, t are also those which represent the transition from
one three-dimensional system of reference to another which is
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moving arbitrarily. But, formally, it goes beyond this as it

also includes arbitrary deformations of space and time.

In this way we have reached the foundation of the general

doctrine of space which alone makes possible complete relativiza-

tion. Our next step will be to link up this mathematical

method with the physical reflections which we made earlier

and which reached their climax in the enunciation of the

principle of equivalence.

We are now in the same position with respect to the four-

dimensional world as the surveyor in the woody regions, after

he had marked out his co-ordinate network but had not yet

begun to measure it out with his measuring chain. We must
look round for a four-dimensional measuring chain.

This is furnished by the Principle of Equivalence. We
know that by choosing the system of reference appropriately

we can always secure that no gravitational field reigns in any

part of the world if it be sufficiently small. There are an

infinite number of such systems of reference, which move
rectilinearly and uniformly with respect to each other, and

for which the laws of the special theory of relativity hold.

Measuring rods and clocks behave as expressed by Lorentz-

transformations : light rays and inertial motions (see p. 254)

are straight world-lines. Within this small region of the world

the quantity
G = s 2 = x 2 + y

2 + z 2 - cH 2
,

is an invariant with a direct physical meaning. For if the

line connecting the origin O (which is assumed to be in the

interior of the small region) with the world-point P (x, y, z, t)

is a space-like world-line, then s is the distance, OP, in that

system of reference in which the two points are simultaneous.

But if the world-line OP is time-like, then s = ict, where t is

the time-difference of the events O and P in the co-ordinate

system in which both occur at the same point. Earlier

(VI, 10, p. 245) we called s the four-dimensional distance. It

is directly measurable by means of measuring rods and clocks,

and so, if the imaginary co-ordinate u = ict is introduced, it

has, formally, the character of a Euclidean distance in the four-

dimensional space :

s = n/G~= six 2 -\-y 2 + z 2 + it
2

.

The fact of the validity of the special theory of relativity

in small regions corresponds exactly to the fact that Euclidean

geometry can be applied to sufficiently small parts of a curved

surface. But Euclidean geometry and the special theory of

relativity need not hold in great regions. There need be no

straight world-lines at all but only straightest or geodetic lines.
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The further treatment of the four-dimensional world runs

parallel with the theory of surfaces. First we must measure
out the meshes of any arbitrary net of Gaussian co-ordinates

with the help of the four-dimensional distance s. We interpret

the process in a two-dimensional #/-plane (Fig. 134). Let a mesh
of the co-ordinate net be bounded by the lines x = 3, x = 4,

and t = 7, t = 8 (cf. Fig. 129 on p. 258). The rays of light

that start out from the corner x = 3, t = 7 correspond to two
world-lines which intersect and which we can draw as straight

lines within a small region. The hyperbolic calibration curves

G = ± 1 lie between these light-lines. They correspond to

the circle which, in ordinary geometry, contains the points

which are at the same distance I.

Then the application of formula (97) of the theory of surfaces
leads to the expression

S 2 = gu* 2 + 2g12XU + g22U
2

,

for the invariant s, where x and u = id are the Gaussian
co-ordinates of any point P of the mesh under consideration.

If we insert u = ict, we get

s 2 = gu* 2 + 2icg12xt - c 2
g22t\

or, if we call the factors differently :

s 2 = gn* 2 + 2g12xt + g22t\

gu> gi2> £22 ai*e called factors of the measure-determination
and may be interpreted directly physically. Thus, for example,
for t = o, s = \Zgux, that is, x/^7 denotes the true length
of the spatial side of the mesh in the system of reference in
which it is at rest.

In the four-dimensional world the invariant distance s
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between two points whose relative Gaussian co-ordinates are

x, y, z, t are represented by an expression of the form

S 2 = gn*
2 + g* 2y

2 + gzz*
2 + gut*\

+ 2g12*y + *g\&* + H\#t \ • . (98)

+ 2g23yz + 2g2iyt + 2gMzt
J

This formula may be called the generalized Pythagorean theorem

for the four-dimensional world.

The quantities gn , . . . gM are the factors of the measure-

determination. In general they will have different values

from mesh to mesh of the co-ordinate net. Moreover, they

will have other values for another choice of the Gaussian co-

ordinates, and the new values will be connected with the

original values by definite formulae of transformation.

8. The Fundamental Laws of the New Mechanics

According to the general principle of relativity the laws

of physical nature are represented by invariants for arbitrary

transformations of the Gaussian co-ordinates, just as the

geometric properties of a surface are invariant for arbitrary

transformations of the curvilinear co-ordinates. The frame-

work of the theory of surfaces was given by the geodetic lines.

In just the same way geodetic lines are constructed in the four-

dimensional world, that is, such lines as form the shortest

connexion between two world-points ; and in this process the

distance between two neighbouring points is to be measured
by the invariant s.

Now what do the geodetic lines signify ? In such regions

as are free of gravitation for an appropriate choice of the system

of reference they are clearly straight lines with respect to this

system. But the world-lines are either space-like (s
2 >o) or

time-like (s
2 <o) or light-lines (s = 0). If we introduce a

different system of Gaussian co-ordinates the same world-

lines now become curved, but, of course, remain geodetic

lines.

From this it follows that the geodetic lines must represent

just those physical phenomena which are represented in ordinary

geometry and mechanics by straight lines, namely, rays of

light and motions of inertia. Thus we have found the re-

quired formulation for the generalized law of inertia, which

comprises the phenomena of inertia and gravitation in one

expression.

If the factors of the measure-determination gn , . . . gS4

relative to an arbitrary Gaussian co-ordinate system are known
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for every point of the net, the geodetic lines can be obtain d

by mere calculation. If there is no gravitational field present

in a certain region relative to the co-ordinate system under

consideration, then

gn = £22 = S33 = 1, £44 = - c 2

\

gu = giz = gU = £23 = £24 = £34 = oJ

for then the general expression of the distance (98) becomes

reduced to s 2 = x 2 -}- y
2 -\- z 2 — c 2

t
2

. Deviations of g from

this value thus denote the state which is called gravitational

field in ordinary mechanics; hence inertial motions are non-

uniform and curved, and ordinary mechanics gives the Newton-
ian force of attraction as the cause of this. The ten quantities

g have thus a double function : (1) they define the measure-

determination, the units of length and time ; (2) they represent

the gravitational field of ordinary mechanics. We say that

the g's determine the metrical field or the gravitational field.

Einstein's theory is thus a wonderful amalgamation of

geometry and physics, a synthesis of the laws of Pythagoras

and Newton. It achieves this by thoroughly purifying the

conceptions, space and time, of all the added ingredients of

subjective intuition and by the utmost objectivation and
relativization that is conceivable. This constitutes the signi-

ficance of the new doctrine in the intellectual progress of

mankind.
But the new formulation of the law of inertia is only the

first step of the theory. We have introduced the g's abstractly

and have found in them the means of describing mathematically

the geometrical-mechanical state of the world relative to any
arbitrary Gaussian co-ordinate system. Now the proper prob-

lem of the theory comes to light. It is as follows :

Laws are to be found, according to which the metrical

field (the g's) can be determined for every point of the space-

time continuum relatively to any Gaussian co-ordinate-

system.

Concerning these laws we know the following at present

:

1. They must be invariant with respect to an arbitrary

change of the Gaussian co-ordinates.

2. They must be fully determined by the distribution of

the material bodies.

To these there has to be added a formal condition, which

Einstein has taken over from the ordinary Newtonian theory

of gravitation. For if we represent the Newtonian theory

as a theory of pseudo-action by contact by means of differential

equations, then, like all field laws of physics, these are of the

18
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second order, and we should demand that the new laws of

gravitation, which are differential equations in the g's, should

also be at most of the second order.

Einstein has succeeded in deriving the equations of the

metrical field or of the gravitational field from these postulates.

Hilbert, Klein, Weyl, and other mathematicians have lent

their efforts in investigating thoroughly and illuminating the

formal structure of Einstein's formulae. We cannot here give

these laws and the arguments on which they are founded
because this is impossible without the application of higher

mathematics. A few indications will suffice.

We know from the theory of surfaces that curvature is

an invariant with respect to any arbitrary change of the Gaus-
sian co-ordinates, and it may be determined from measurements
in the surface. The reader will remember the use of the

hexagon of wires.

In an exactly analogous way invariants may be found for

the four-dimensional world which are direct generalizations of

the curvature invariant of the theory of surfaces. Let us

consider it as arising in the following way : let all the geodetic

world-lines which touch a two-dimensional surface which passes

through a point P of the four-dimensional world start out

from P. These geodetic lines themselves again occupy a

surface which may be called a geodetic surface. Now, if we
draw a hexagon within this surface, such that its sides and
radii have the same four-dimensional length, this hexagon will

not in general be closed ; thus the geodetic surface is curved.

If we make the geodetic surface through the point P take

up other positions in the four-dimensional space, the curvature

alters. The totality of all the curvatures of the geodetic

surfaces through a point furnishes a number of independent

invariants. If these are zero, the geodetic surfaces are plane,

and the four-dimensional space is Euclidean. The deviations

of the invariants from zero thus determine the gravitational

fields and must depend on the distribution of the material

bodies. But, according to the special theory of relativity

(VI, 8, formula (94), p. 232), the mass of a body is equal to

the energy divided by the square of the velocity of light.

The distribution of matter is thus determined by certain

energy-momentum-invariants. It is these to which the curva-

ture invariants are set proportional. The factor of propor-

tionality corresponds to the gravitational constant (III, 3, p. 53)

of Newton's theory. The formulae so obtained are the equations

of the metrical field. If the space-time distribution of energy

and momentum are given, the g's can be calculated, and they

in their turn determine the motion of the material bodies
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and the distribution of their energy. The whole is a highly

complicated system of differential equations. But this mathe-

matical complexity is counterbalanced by the enormous con-

ceptual advance which is given by its general invariance. For

this is the expression of the complete relativity of all events.

Absolute space has vanished finally out of the laws of physics.

We have yet to mention a terminology which usually

excites aversion among non-mathematicians. We are accus-

tomed to call the invariants of three-dimensional space which

are analogous to surface-curvature or even those of four-

dimensional space itself the measures of curvature. We say of

space-time regions in which they differ from zero that they are
" curved." The person of untrained mind usually becomes
indignant at this. He states that he can understand something

in space being curved, but it is sheer nonsense to imagine

space being curved. Well, no one asks that it be imagined
;

can invisible light be imagined, or inaudible tones ? If it be

admitted that our senses fail us in these things, and that the

methods of physics reach further, we must make up our minds

to allow the same to the doctrine of space and time. For

intuition perceives only what comes about as a mental process

through the joint working of physical, physiological and
psychological phenomena, and is, therefore, actually given by
it. Physics does not, of course, deny that this which is actually

given can be interpreted with great definiteness according to

the classical laws of Euclid. The deviations which Einstein's

theory predicts are so small that only the extraordinary accuracy

of measurement of present-day physics and astronomy can

disclose them. Nevertheless they are there, and if the sum of

our experiments leads to the result that the space-time con-

tinuum is non-Euclidean or " curved," intuition must give way
to the judgment pronounced by knowledge.

9. Mechanical Inferences and Confirmations

The first task of the new physics is to show that classical

mechanics and physics is correct to a high degree of approxi-

mation, for otherwise it would be impossible to understand

how two centuries of untiring and careful research could rest

satisfied with it. The next problem is, then, to find out the

deviations that are characteristic of the new theory and that

allow them to be tested by experiment.

How is it that classical mechanics suffices to describe all

earthly phenomena and almost all phenomena of cosmic

motions ? What takes the place of the conceptions of absolute

space and absolute time without which, according to Newtonian
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Foucault pendulum, inertial and centrifugal forces, and so
forth, cannot be explained ?

In principle we have already answered these questions at
the beginning of our discussions about the general principle

of relativity. We there (VII, i, p. 249) set up as the basis

of relativistic dynamics the law that distant masses as real

causes have now to take the place of absolute space as a fictitious

cause of physical phenomena. The cosmos as a whole, the
army of stars, produces at every point and at every moment
a definite metrical or gravitational field. How this is consti-

tuted on a large scale can be taught only by a speculation of a
cosmological kind, such as we shall get to know later (VII, 11,

p. 287). On a small scale, however, the metrical field must
be " Euclidean " if the system of reference be appropriately
chosen ; that is, the inertial orbits and rays of light must be
straight world-lines. Now, compared with the cosmos, even
the dimensions of our planetary system are small, and hence
the Newtonian laws hold in them with respect to an appro-
priate co-ordinate system so far as the sun or planetary masses
do not produce local disturbances, which do not correspond
to the attractions of the Newtonian theory. Astronomy
teaches us that such a system of reference in which the action
of the masses of the fixed stars within the region of our planetary
system leads to the Euclidean measure-determination, is just

at rest relatively to (or in uniform rectilinear motion with
respect to) the totality of cosmic masses, and that the fixed

stars execute relatively only small motions which cancel each
other in the mean. An explanation of this astronomic fact

can be given only by applying the new dynamic principles to

the whole cosmos, which will engage our attention in the con-
cluding section. Here we are for the present dealing with the

mechanics and physics of the region within the planetary system.
Then all doctrines of Newtonian mechanics remain almost
unaltered. But we must bear in mind that the vibration plane
of Foucault's pendulum remains fixed, not with respect to

absolute space, but with respect to the system of distant masses,
that is, that centrifugal forces do not occur in the case of

absolute rotations, but in that of rotations with respect to

distant masses. Furthermore, we are quite free to refer the

laws of physics not to the ordinary system of co-ordinates,

in which the metrical field is Euclidean and a gravitational

field in the ordinary sense does not exist (except for the local

fields of planetary masses), but to a system moving in any
way whatsoever (or even deformed in itself) ; only in this

case gravitational fields at once appear and geometry loses its
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Euclidean character. The general form of all physical laws

remains always the same, only the values of the quantities

gn> gi2> • • • #34> which determine the metrical field or the

gravitational field, are different in every system of reference.

This invariance of the laws alone contains the difference between
the new and the old dynamics ; here, too, we were able to

pass over to systems of reference moving arbitrarily (or de-

formed), but then the physical laws did not retain their form.

Rather, there were " simplest " forms of the physical laws,

which were assumed in definite systems of co-ordinates at

rest in absolute space. In the general theory of relativity

there are no such simplest or favoured forms of the laws
;

at the most, the numerical values of the quantities gn . . . g 34 ,

which occur in all physical laws might be particularly simple

within limited spaces or be only slightly different from such

simple values. Thus, geometry refers its formulae to a system

of reference which would be Euclidean within the small space

of the planetary system, if there were no sun and no planets,

that is, where the gxl . . . g 34 would have the simple values

°f (99) > P- 273- In reality, however, the gn . . . g84 have not

these values at all, but differ from them in the vicinity of the

planetary masses, as we shall explain further later. Any
other (say rotating) system of reference, in which the gu . . . g 34

have not the simple values of (99) even if there were no plane-

tary masses, is thus in principle fully equivalent to the first.

This gives us freedom to return to Ptolemy's point of view of

a " motionless earth." This would mean that we use a system
of reference rigidly fixed to the earth, whereby the gn . . . g 34

assume such values as correspond to the centrifugal field of

the rotation with respect to distant masses. From Einstein's

higher point of vantage Ptolemy and Copernicus are equally

right. Both view-points furnish the same physical laws, but

with different numerical values for the gn . . . g 34 . What
point of view is chosen is not decided by principles but is a

matter of expedience. For the mechanics of the planetary

system the view of Copernicus is certainly the more convenient.

But it is meaningless to call the gravitational fields that occur

when a different system of reference is chosen " fictitious
"

in contrast with the " real " fields produced by near masses :

it is just as meaningless as the question of the " real " length

of a rod (VI, 5, p. 213) in the special theory of relativity. A
gravitational field is neither " real " nor fictitious in itself.

It has no meaning at all independently of the choice of co-

ordinates, just as in the case of the length of a rod. Nor are

the fields distinguished by the fact that some are produced by
masses and others are not ; in the one case it is in particular
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the near masses that produce an effect, in the other it is the

distant masses of the cosmos.

Arguments of "common sense" have been advanced against

this doctrine ; among them is the following : If a railway

train encounters an obstacle and becomes shattered, this event

can be described in two ways. Firstly, we may choose the

earth (which is here regarded as at rest relatively to the cosmic

masses) as a system of reference, and make the (negative)

acceleration of the train responsible for the destruction. Or,

secondly, we may choose a co-ordinate system rigidly at-

tached to the train, and then, at the moment of collision,

the whole world makes a jerk relatively to this system, and we

get everywhere a very strong gravitational field parallel to

the original motion, and this field causes the destruction of

the train. Why does the church-tower in the neighbouring

village not tumble down, too ? Why do the consequences

of the jerk and of the gravitational field associated with it

make themselves remarked one-sidedly in the case of the train,

whereas the following two statements are to be equivalent

:

the world is at rest and the train is slowing down—the

train is at rest and the world is slowing down ? The answer

is as follows : The church-tower does not fall down because,

during the retardation, its relative position to the distant

cosmic masses is not changed at all. The jerk, which, as seen

from the train, the whole world experiences, affects all bodies

equally as far as the most distant stars and including the church-

tower. All these bodies fall freely in the gravitational field

which presents itself during the retardation, with the excep-

tion of the train, which is prevented by the retarding forces

from falling freely. But with respect to internal events (such

as the equilibrium of the church-tower) freely falling bodies

behave just like bodies that are poised freely and are with-

drawn from all influences. Thus, no disturbances of the

equilibrium occur, and the church-tower does not tumble

down. The train, however, is prevented from falling freely.

This gives rise to forces and stresses which lead to its consequent

destruction.

To appeal to " common sense " in these difficult questions

is altogether a precarious proceeding. There are supporters of

the theory of a substantial ether who take up arms against

the theory of relativity because it is not tangible enough or

cannot be pictured clearly. Some of these have finally come

to recognize the special principle of relativity, now that experi-

ments have indisputably decided in favour of it. But they

still struggle against the principle of general relativity because

it is contrary to common sense. To these Einstein makes the
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following reply : According to the special theory of relativity,

the train in uniform motion is certainly a system of reference

which is equivalent to the earth. Will the common sense of

the engine-driver admit this ? He will object that he has not

to heat and oil the " surroundings " but the engine, and that it

must, therefore, be the motion of the engine which shows

the effect of his work. Such an application of common sense

leads finally to the negation of all scientific thought. For the

same common sense of the ordinary man asks why we
should busy ourselves with relativity or cathode rays at all,

since no material personal gain can be expected from it.

We now resume our consideration of the celestial mechanics

from the point of view of Einstein, and turn our attention to

the local gravitational fields which superpose themselves on

the cosmic field on account of the existence of planetary masses.

We can give but a short resume of these researches of

Einstein, as they concern, in particular, mathematical conse-

quences of the field equations.

The simplest problem is to determine the motion of a

planet about the sun. In this we do best to start from the

already mentioned Gaussian system in which the gravitational

field is Euclidean and no gravitational field in the ordinary

sense would be present in the region of the solar system, the

sun and the planet being considered absent ; this system is

characterized by the circumstance that the glt . . . g 34 would

have the values of (99), p. 273, if the sun's action be disregarded.

It is merely a question of determining deviations from these

values effected by the sun's mass. Einstein's field-equations

serve to do this, and we find that if we assume the sun's mass

to be distributed with spherical symmetry and hence the field,

similarly these equations give us quite definite relatively simple

expressions for the gn . . . g 34 . Then we can calculate the plane-

tary orbits as geodetic lines of this measure-determination.

Its curvature which is regarded in Newton's theory as the action

of the attractive force appears in Einstein's theory as a con-

sequence of the curvature of the space-time world, of which

they are the straightest lines.

Calculation now discloses that the planetary orbits deter-

mined in this way are with great approximation the same as

in Newton's theory. This result is astounding if we bear in

mind the totally different standpoint of the two theories. In

the case of Newton we have absolute space which is unsatis-

factory on logical grounds and a deflecting force which was
invented ad hoc with the remarkable property that it is pro-

portional to the inertial mass ; in the case of Einstein a general

principle, satisfying the requirements of the theory of knowledge
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without the addition of a special hypothesis. If Einstein's

theory were to achieve no more than the subjection of Newtonian
mechanics to the general principle of relativity, everyone who
is seeking the simplest harmony in the laws of nature would
prefer it.

But Einstein's theory does more. As already mentioned,

it contains Newton's laws for planetary orbits as approxi-

mations. The exact laws are slightly different, and the dif-

ference becomes the greater the nearer the planet is to the

sun. Now, in dealing with Newton's celestial mechanics
(III, 4, p. 58) we have already seen that it fails in the case

of just the planet which is nearest the sun, namely, Mercury.
There is left an unexplained motion of Mercury's perihelion

of 43 seconds of arc per century. But this is just the amount
required by Einstein's theory. Its confirmation was, there-

fore, anticipated by Leverrier's calculation. This result is of

extraordinary importance. For no new arbitrary constants

enter into Einstein's formula, and the " anomaly " of Mercury
is just as necessary a consequence of the theory as the result

that Kepler's laws are valid for the planets far removed from
the sun.

10. Optical Deductions and Confirmations

So far there have been found besides these astronomic

deductions only a few optical phenomena which do not escape

observation owing to the smallness of their effects.

One is the displacement towards the red of the spectral lines

of the light which comes from stars of great mass. At their

surfaces there is a strong gravitational field. This affects the

measure-determination and causes a definite clock to go more
slowly there than on the earth where the gravitational field is

smaller. But we have such clocks in the atoms and molecules

of luminescent gases. Their mechanism of vibration is cer-

tainly the same wherever the molecule happens to be, and thus

the time of vibration is the same in those systems of reference

in which the same gravitational field, say the field zero, is

present.

If the time of vibration in the fieldless region of space is

T, then s = icT is the corresponding invariant distance of the

world-points, which correspond to two successive extreme
points of the vibration, relatively to the system of reference in

which the atom is at rest. In a relatively accelerated system
of reference in which there is a gravitational field, the same
s = id is given by formula (98), in which x, y, z characterize

the position of the atom and t is the time of vibration measured
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in this system. We may set x — y — z = o by choosing

the origin of the space co-ordinates in the atom, then

s« = - c 2T2 = gut*.

Thus
c

t = T
V-^44

Now it is only in a fieldless space that we have g44 = — c 2

(see formula (99), p. 273), thus / == T. But in the gravitational

field g44 is different from — c 2
, say g44 = — c 2

(1 — y). Thus
the time of vibration is altered, and is equal to

\/i — y

or, if the deviation y is small, then the time of vibration is

approximately (see note on p. 182) equal to

t = T (x + 9 . . . (zoo

This is the difference in the beating of two clocks which are

situated at different places, for which the difference of the

gravitational field given by gu has the relative value y.

Whether y is positive or negative can be found by con-

sidering a simple case, in which the question can be answered

directly with the help of the principle of equivalence. This

can be done successfully for a constant gravitational field

such as occurs at the immediate surface of a heavenly body.

The action of such a field g may be replaced by an acceleration

of the observer of the same value g and directed oppositely

to the attraction. If / is the distance of the observer from

the surface of the star, a light-wave which starts from it will

take the time t = - to reach him, and he will observe the wave
c

as if he had during that time executed a motion of acceleration

outwards of the amount g. When the light-wave reaches him

he should, on this view, have the velocity v = gt = 2- in the
c

direction of the light's motion ; hence, by Doppler's principle

(formula (40), p. 107) he observes the diminished vibration

number

"-I -*-§);
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thus, the time of vibration t — — observed in the gravitational
v

field is related to the T = - determined in the fieldless space
v

as follows :

t = T—*

i —

or, approximately,

< = T(i+g) • • • (ioi)

This formula gives in general the difference of rate of two clocks

which are present in a constant gravitational field g but are

separated by a distance /.

Accordingly, in a constant gravitational field the quantity

y = JL which occurs in (ioo) is positive. The time of vibra-

tion, and hence also the wave-length, becomes magnified in

the case of a light-wave moving oppositely to the direction

of attraction of the gravitational field. This result can be

applied to the light which comes from the stars ; the quantity

y will be positive. Hence all the spectral lines of the stars

are displaced a little towards the red end of the spectrum.

Although this effect is very small, research has just recently

confirmed its existence.

At this stage we can fill in a gap which was left earlier

(VI, 5, p. 216), namely, the complete explanation of the " clock

paradox." In it we assumed two observers A and B, of which
one, A, was at rest in an inertial system (of the special theory

of relativity), whilst the other, B, set out on a journey. On
B's return A's clock, by (76) page 215, is in advance of B's

B 2

by the amount tL-t
, where t is the total time of the journey

as measured in the system A. This formula of course holds

only approximately, yet it suffices for our purpose so long as we
use corresponding approximations in our other calculations.

Now we may also regard B as at rest. A then makes a

journey in the reverse direction. But of course we cannot
simply infer that B's clock must now be in advance of A's

by exactly the same amount, for B is not at rest in an inertial

system but is experiencing accelerations.

From the standpoint of the general theory of relativity

we must rather take care that when the system of reference
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is altered definite gravitational fields must be introduced during

the times of acceleration.

In the first case under consideration A is at rest in a region

of space in which the measure-determination is Euclidean

and gravitational fields are absent. In the second, B is at

rest in a system of reference in which, during the departure,

moment of turning, and arrival of A gravitational fields occur

briefly, in which A falls whereas B is held fixed by external

forces. Of these three gravitational fields the first and the

last have no influence on the relative rates of the clocks of

A and B, since they are at the same point at the moments
of departure and return, and since a difference of rate occurs

in a gravitational field, by (101), only when there is a distance

/ between the clocks. But a difference of rate occurs when
A reverses his direction. If T is the time taken to reverse,

during which a gravitational field arises, B being supposed at

rest, then A's clock, which is at a distance / and in the gravi-

tional field g, is in advance of B's clock, and this is given to

a sufficient degree of approximation bv (101), p. 282, viz., by ^T .

c

In the times, however, when A is moving uniformly and the

special principle of relativity must be applied, A's clock must,

conversely, be behind B's clock by the amount —
1 . Thus,

on the whole A's clock will be in advance of B's by

gl $\
'J 2*

on A's return.

We next assert that this value agrees exactly with the result

of the first point of view in which A was regarded at rest,

namely, that it is equal to !—t .

For, since the moving observer, in reversing his velocity

v, assumes the velocity — v, his total change of velocity is 2v.

We get his acceleration by dividing this by r, the time taken

to effect this change. This gives g = — as his acceleration.

On the other hand, at the moment of turning back half the

duration / of the journey is over. The distance between the

two observers is then I = v--

From this it follows that gl — v 2-
T
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and

which concludes the proof.

Thus the clock paradox is due to a false application of the

special theory of relativity to a case in which the general

theory should be applied.

A similar error lies at the root of the following objection,

which is continually being brought forward, although the

explanation is very simple.

According to the general theory of relativity a co-ordinate

system which is rotating with respect to the fixed stars, that is,

which is rigidly connected with the earth, is to be fully equiva-

lent to a system which is at rest with respect to the fixed

stars. In such a system, however, the fixed stars, themselves,

acquire enormous velocities. If r is the distance of a star,

its velocity becomes v = -=^, where T denotes the duration

of a day. This becomes equal to the velocity of light c, if

cT
r — — . If r is measured in terms of the astronomic unit of

277

length, the light-year,* we must divide this by c . 365, T being

set equal to 1 day. So soon as the distance exceeds -F-
277 . 365

light-years, the velocity becomes greater than c. But even
the nearest stars are several light-years distant from the sun.

On the other hand the theory of relativity (VI, 6, p. 220)

asserts that the velocity of material bodies must always be
less than that of light. Here there seems to be a glaring

contradiction.

This, however, arises only because the law v< c is entirely

restricted to the special theory of relativity. In the general

theory it assumes the following more particular form. As
we know, it is always possible to choose a system of reference

such that Minkowski's world-geometry holds in the immediate
neighbourhood of any arbitrary point, that is, so that the

geometry is Euclidean, and that there is no gravitational

field, and gllt . . . gM have the values of (99) on page 273.

With respect to this system and in this narrow space the velocity

of light c = 3 . io10 cm./sec. is the upper limit for all velocities.

But as soon as these conditions are not fulfilled, that is, if

gravitational fields are present, any velocity, either of material

* A light-year is the distance which light traverses with the velocity 300,000
kms. per sec. in one year (365 days).



EINSTEIN'S THEORY OF RELATIVITY 285

bodies or of light, can assume any numerical value. For the

light-lines in the world are determined by G = s1 = o, or

if we restrict our attention to the x/-plane, by

s 2 = gu*
2 + 2g1Axt + gj 2 = o.

xWe can calculate ' from this quadratic equation, and this is

lr

the velocity of light. For example , if g14 = o, we get from

£ii*
2 + £44*

2 = the value ?=\ — — as the velocity of

light, and this depends on just how great gn and g44 happen to

be.

If we take the earth as the system of reference, we have

the centrifugal field (III, 9, p. 70) 4^-, which assumes enormous

values at great distances. Hence the g's have values that

differ greatly from the Euclidean values of (99). Therefore the

velocity of light is much greater for some directions of the

light-ray than its ordinary value c, and other bodies can also

attain much greater velocities.

In any arbitrary Gaussian co-ordinate system not only

does the velocity of light become different, but the light-rays

no longer remain straight. A second optical test of the general

principle of relativity depends on this curvature of the light-

rays. The world-lines of light are geodetic lines, just like the

inertial orbits of material bodies, and hence, like the latter,

will become curved. But on account of the great velocity

of light the deflection of its rays is much less. We can see

why this deflection should come about from the principle of

equivalence without further theory. For, in an accelerated

system of reference every rectilinear and uniform motion is

curved and irregular, so that the same must hold for any

arbitrary gravitational field.

A ray of light which, coming from a fixed star, passes close

by the sun will thus be attracted to it and will describe a

somewhat concave orbit with respect to the sun (Fig. 135).

The observer on the earth will assign to the star a position

on the extension of the ray that strikes his eye, and hence

the star will appear a little displaced outwards. This deflec-

tion might be calculated from Newton's theory of attraction,

in which the ray of light may be treated, say, as a comet which

approaches with the velocity of light, and it is of historic

interest that this idea was carried out as early as 1801 by the

German mathematician and surveyor Soldner. We then get

a formula similar to that of Einstein, but giving only half the
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value for the deflection. This is due to the circumstance that

Einstein's theory assumes that the gravitational field in the

neighbourhood of the sun must be more intense. It is just

this apparently minute difference (which escaped Einstein's

attention when he made his first provisional publication of

the theory) that constitutes a particularly sharp criterion of

the correctness of the general theory of relativity.

The deflection of the apparent positions of the fixed stars in

the neighbourhood of the sun can be observed only during a total

eclipse of the sun since otherwise the bright radiation of the

sun renders invisible the stars in its vicinity.

An eclipse of the sun took place on 29th May, 1919. Eng-

land sent two expeditions whose sole object was

to ascertain whether the " Einstein effect " was
actively present or not. One proceeded to the

West Coast of Africa, the other to North Brazil,

and they returned with a number of photographs

of the stars surrounding the sun. The result ob-

tained by measuring out the plates was declared

on 6th November, 1919, and proclaimed the

triumph of Einstein's theory. The displacement

predicted by Einstein which is to amount to 17
seconds of arc was present to the full extent.

Since the remarkable achievement of the

verification of this prophecy, the position of

Einstein's doctrine may be regarded as assured

in science.

The question whether it will be possible to find

still other observable phenomena by which the

theory can be tested cannot be answered with

certainty. But since it is probable that the
J 35- refinement of experimental observation of later

decades or centuries will surpass our own by just as much as

ours surpass that of Newton's time, we may expect that the

new theory will be brought more and more into harmony
with observation.

11. Macrocosm and Microcosm

We have seen above that the view that inertial forces are

interactions necessarily leads to the logical consequence that

the theory is applicable to the whole cosmos. The point is

to understand why the system of reference for which Euclidean

metrics hold in the neighbourhood of the solar system is rela-

tively at rest (or in translational motion) with respect to the

totality of cosmic masses. But observations of distant stellar
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systems, double stars, teaches us that there the same holds.

This seems to indicate that the metrical field determined by
the totality of all masses has everywhere the same character

unless it is disturbed locally by neighbouring masses.

Since time immemorial speculations about the universe

have been the favourite theme of minds given to fancy. But
scientific astronomy has also occupied itself with such problems.

Above all the question has been investigated whether there

are a finite or an infinite number of heavenly bodies, and a

decision has had to be taken in favour of a finite number.

Here we can give only the merest indication of the argument.

If the stars were distributed fairly regularly in space and if

they were infinite in number the whole heavens would shine

with a bright light, because then a star would have to be

encountered in every direction somewhere or at some time,

unless the light were to be weakened or absorbed on its way
from the star to us. But good grounds can be adduced to

support that there is no absorption of light in cosmic space.

Hence we must regard the totality of stars as a gigantic

accumulation which either suddenly ceases as we go outwards

or at least gradually becomes diffuse.

But this view leads to a great difficulty if we start from

Newtonian mechanics. Why do the stars remain together ?

Why do they not vanish from finite regions ? We know that

all stars have considerable velocities, but these are distributed

irregularly in all directions and there is no indication that the

parts of the whole are tending to separate.

The answer will be that gravitation holds the stars together.

But this answer is wrong. The methods of investigating

such problems have long been known. They are those of the

kinetic theory of gases. A gas consists of innumerable mole-

cules that fly about in a disordered way, and we know the laws

underlying such irregular motion.

Now it is clear that a gas which is not enclosed in rigid

walls immediately expands and diffuses itself. Experiment

and theory agree in teaching us that a system of bodies does

not permanently remain together even if the bodies attract

each other with forces which, according to Newton's law, are

inversely proportional to the square of the distance.

The stellar system as a whole should behave exactly like a

gas, and it seems impossible to grasp why it exhibits no ten-

dency to lose itself in the infinite regions of space.

Einstein has given a very remarkable answer to this. He
says that this is so because the world is not infinite at all. But
where, then, are its limits ? Is it not absurd to assume that

the universe is somewhere " hedged in " ?
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Now, to be limited or bounded and to be finite is by no
means the same. Consider the surface of a sphere. It is

doubtless finite but it is without limits. Einstein asserts that

three-dimensional space behaves in the same way. He finds

it possible to do this because the general theory of relativity

allows space to be curved. He thus arrives at the following

theory of the universe. If we disregard the irregular distribu-

tion of the stars and replace it by a distribution of mass which

is everywhere uniform we may ask under what conditions

such a configuration of stars can remain permanently at rest

according to the field equations of gravitation. The answer

is that the measure of curvature of three-dimensional space

must everywhere have a constant positive value just as in

the case of a two-dimensional spherical surface. It is evident

that a finite number of mass-points whose velocity tends to

make them separate distribute themselves uniformly on a

spherical surface and bring about a sort of dynamical equili-

brium. An exactly corresponding result is to hold for the

three-dimensional distribution of the stars. Einstein even

estimates the value of this " world curvature with the help

of a plausible assumption about the total mass of the stars."

Unfortunately, it comes out so small * that for the present

there is no hope of testing this bold idea experimentally.

It follows from the fact that the curvature of the world

has the same value everywhere that the metrical field has the

same character everywhere in the world, and that it is Euclidean

in exactly that system of reference which is at rest with respect

to all masses as a whole (or is moving uniformly and rectili-

nearly with respect to them). This statement contains the

nucleus of the facts which Newton wished to represent by his

doctrine of absolute space.

Every attempt to picture to oneself such a finite but un-

bounded " spherical " world is, of course, hopeless. It is just

as impossible as trying to get an idea of the local curvatures

of the world in the vicinity of gravitating masses. And yet

this theory has very concrete consequences. Let us imagine

a telescope in the Babelsberg Observatory directed at a definite

fixed star. At the same time a telescope in the Antipodes,

say at Sydney in Australia, to be directed at exactly the op-

posite point of the heavens. Then, according to Einstein's

cosmology, it is conceivable that the observers at both tele-

scopes see one and the same star, which is recognizable by, say,

a characteristic spectrum. Actually, just as a person can

* According to an estimate of de Sitter the " circumference of the world," that

is, the length of a geodetic world-line that returns into itself, is about ioo million

light-years.
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start a voyage around the earth by setting out towards the

east or the west and travelling round on the same great circle

in either direction, so in the spherical world of Einstein a light

ray can start out from a star along a geodetic line in both
directions and can meet the earth in opposite directions.

Nowadays we may still regard such reflections as the pro-

ducts of wanton fancy. Who knows whether they may not

become, within a few centuries, empirical facts, owing to re-

finements in our methods of observation ? It would be arro-

gant to deny this possibility. Even nowadays there are serious

astronomers who take Einstein's doctrine of the macrocosm as

the basis of their quantitative researches into the laws of the

distribution of the fixed stars.

But Einstein's ideas also penetrate into the microcosm,

the world of the atom. We have already touched earlier

(V, 15, p. 187) on the question of the remarkable forces which

prevent an electron or an atom from going asunder. Now,
these configurations are enormous accumulations of energy

in very small portions of space. Hence they will have in them-
selves considerable curvatures of space or, in other words,

gravitational fields. It suggests itself to us that it is these

fields that hold together the electric charges which tend to

separate.

But this theory is only in its initial stage at present and it

is quite uncertain whether it will be crowned with success.

For we know from numerous experiments that new and strange

laws rule in the atomic world and that they give expression

to a harmony of integral numbers which is still quite unintel-

ligible to us. It is the so-called quantum theory of Planck

(1900). The decision rests with future investigators.

12. Conclusion

We now know, at least in coarse outline, Einstein's doctrine

of space and time. We have traced its origin and development

from the physical theories of his predecessors and we have

seen how a clearly recognizable process of objectivation and
relativization leads along the labyrinthine paths of research

to the height of abstraction which characterizes the basic

conceptions of the exact sciences of the present day. The
power of the new doctrine is due to its immediate growth out

of experience. It is an offspring of experimental science and
has itself produced new experiments that bear witness to its

merit. But what constitutes its importance beyond the

narrow sphere of special research is the grandeur, the boldness,

and the directness of the thoughts involved. Einstein's
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theory represents a type of thought the ideal of which is to

keep a sound balance between freely creative fancy, critical

logic, and a patient adaptation to fact. It is not a world view,

if world signifies more than Minkowski's space-time manifold,

but it leads whoever delves patiently into his ideas to a world

view. For, beyond the bounds of science, too, objective and

relative reflection is a gain, a release from prejudice, a liberation

of the spirit from standards whose claim to absolute validity

melts away before the critical judgment of the relativist.
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